{"title":"基于余弦相似方法和人工神经网络的文献综述数据分类","authors":"Lely Meilina, I. Kumara, I. Setiawan","doi":"10.24843/mite.2021.v20i02.p15","DOIUrl":null,"url":null,"abstract":"Dampak positif yang ditimbulkan dari perkembangan teknologi salah satunya adalah kemudahan dalam menyampaikan aspirasi dan dalam mendapatkan informasi dengan sangat cepat. Manfaat dari perkembangan teknologi ini dapat dirasakan oleh semuassektor, termasuk sektor pemerintahan yang harus mengayomi masyarakat dan negara. Dalam meningkatkan kualitas pelayanan publik, pemerintah harus menerapkan pemerintahan yang berbasis teknologi informasi digital. Oleh karena itu, Pemerintah pusat maupun daerah telah menyediakan layanan pengaduan masyarakat yang berbasis online. Untuk meningkatkan kualitas pelayanan maka sistem pengaduan online harus berjalan dengan optimal. Metode yang banyak digunakan untuk mencari kemiripan teks pengaduan adalah metode cosine similarity dan metode Artificial Neural Network (ANN) untuk klasifikasi data pengaduan. Penelitian ini mereview penerapan kedua metode tersebut untuk mengetahui tingkat akurasinya sebelum dapat di implementasikan pada sistem pengaduan online. Hasil dari review menyatakan bahwa metode Cosine Similarity memiliki tingkat akurasi sebesar 71,5% dan ANN memiliki tingkat akurasi sebesar 77%. Sedangkan metode lainnya memiliki tingkat akurasi sebesar 67%. Dari presentase nilai tersebut dapat disimpulkan bahwa penggunaan metode Cosine Similarity dan ANN layak untuk digunakan dalam mengklasifikasikan data pada Sistem Pengaduan Masyarakat Online","PeriodicalId":53323,"journal":{"name":"Majalah Ilmiah Teknologi Elektro","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Literature Review Klasifikasi Data Menggunakan Metode Cosine Similarity dan Artificial Neural Network\",\"authors\":\"Lely Meilina, I. Kumara, I. Setiawan\",\"doi\":\"10.24843/mite.2021.v20i02.p15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dampak positif yang ditimbulkan dari perkembangan teknologi salah satunya adalah kemudahan dalam menyampaikan aspirasi dan dalam mendapatkan informasi dengan sangat cepat. Manfaat dari perkembangan teknologi ini dapat dirasakan oleh semuassektor, termasuk sektor pemerintahan yang harus mengayomi masyarakat dan negara. Dalam meningkatkan kualitas pelayanan publik, pemerintah harus menerapkan pemerintahan yang berbasis teknologi informasi digital. Oleh karena itu, Pemerintah pusat maupun daerah telah menyediakan layanan pengaduan masyarakat yang berbasis online. Untuk meningkatkan kualitas pelayanan maka sistem pengaduan online harus berjalan dengan optimal. Metode yang banyak digunakan untuk mencari kemiripan teks pengaduan adalah metode cosine similarity dan metode Artificial Neural Network (ANN) untuk klasifikasi data pengaduan. Penelitian ini mereview penerapan kedua metode tersebut untuk mengetahui tingkat akurasinya sebelum dapat di implementasikan pada sistem pengaduan online. Hasil dari review menyatakan bahwa metode Cosine Similarity memiliki tingkat akurasi sebesar 71,5% dan ANN memiliki tingkat akurasi sebesar 77%. Sedangkan metode lainnya memiliki tingkat akurasi sebesar 67%. Dari presentase nilai tersebut dapat disimpulkan bahwa penggunaan metode Cosine Similarity dan ANN layak untuk digunakan dalam mengklasifikasikan data pada Sistem Pengaduan Masyarakat Online\",\"PeriodicalId\":53323,\"journal\":{\"name\":\"Majalah Ilmiah Teknologi Elektro\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Majalah Ilmiah Teknologi Elektro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24843/mite.2021.v20i02.p15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Majalah Ilmiah Teknologi Elektro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24843/mite.2021.v20i02.p15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Literature Review Klasifikasi Data Menggunakan Metode Cosine Similarity dan Artificial Neural Network
Dampak positif yang ditimbulkan dari perkembangan teknologi salah satunya adalah kemudahan dalam menyampaikan aspirasi dan dalam mendapatkan informasi dengan sangat cepat. Manfaat dari perkembangan teknologi ini dapat dirasakan oleh semuassektor, termasuk sektor pemerintahan yang harus mengayomi masyarakat dan negara. Dalam meningkatkan kualitas pelayanan publik, pemerintah harus menerapkan pemerintahan yang berbasis teknologi informasi digital. Oleh karena itu, Pemerintah pusat maupun daerah telah menyediakan layanan pengaduan masyarakat yang berbasis online. Untuk meningkatkan kualitas pelayanan maka sistem pengaduan online harus berjalan dengan optimal. Metode yang banyak digunakan untuk mencari kemiripan teks pengaduan adalah metode cosine similarity dan metode Artificial Neural Network (ANN) untuk klasifikasi data pengaduan. Penelitian ini mereview penerapan kedua metode tersebut untuk mengetahui tingkat akurasinya sebelum dapat di implementasikan pada sistem pengaduan online. Hasil dari review menyatakan bahwa metode Cosine Similarity memiliki tingkat akurasi sebesar 71,5% dan ANN memiliki tingkat akurasi sebesar 77%. Sedangkan metode lainnya memiliki tingkat akurasi sebesar 67%. Dari presentase nilai tersebut dapat disimpulkan bahwa penggunaan metode Cosine Similarity dan ANN layak untuk digunakan dalam mengklasifikasikan data pada Sistem Pengaduan Masyarakat Online