地外自然保护区

IF 1.7 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS International Journal of Astrobiology Pub Date : 2022-11-24 DOI:10.1017/s1473550422000398
Paul L. Smith
{"title":"地外自然保护区","authors":"Paul L. Smith","doi":"10.1017/s1473550422000398","DOIUrl":null,"url":null,"abstract":"\n If human population growth is not controlled, natural areas must be sacrificed. An alternative is to create more habitat, terraforming Mars. However, this requires establishment of essential, ecosystem services on a planet currently unamenable to Terran species. Shorter term, assembling Terran-type ecosystems within contained environments is conceivable if mutually supportive species complements are determined. Accepting this, an assemblage of organisms that might form an early, forest environment is proposed, with rationale for its selection. A case is made for developing a contained facsimile, old growth forest on Mars, providing an oasis, proffering vital ecosystem functions (a forest bubble). It would serve as an extraterrestrial nature reserve (ETNR), psychological refuge and utilitarian botanic garden, supporting species of value to colonists for secondary metabolites (vitamins, flavours, perfumes, medicines, colours and mood enhancers). The design presented includes organisms that might tolerate local environmental variance and be assembled into a novel, bioregenerative forest ecosystem. This would differ from Earthly forests due to potential impact of local abiotic parameters on ecosystem functions, but it is argued that biotic support for space travel and colonization requires such developments. Consideration of the necessary species complement of an ETNR supports a view that it is not humanity alone that is reaching out to space, it is life, with all its diverse capabilities for colonization and establishment. Humans cannot, and will not, explore space alone because they did not evolve in isolation, being shaped over aeons by other species. Space will be travelled by a mutually supportive system of Terran organisms amongst which humans fit, exchanging metabolites and products of photosynthesis as they have always done.","PeriodicalId":13879,"journal":{"name":"International Journal of Astrobiology","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Extraterrestrial nature reserves (ETNRs)\",\"authors\":\"Paul L. Smith\",\"doi\":\"10.1017/s1473550422000398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n If human population growth is not controlled, natural areas must be sacrificed. An alternative is to create more habitat, terraforming Mars. However, this requires establishment of essential, ecosystem services on a planet currently unamenable to Terran species. Shorter term, assembling Terran-type ecosystems within contained environments is conceivable if mutually supportive species complements are determined. Accepting this, an assemblage of organisms that might form an early, forest environment is proposed, with rationale for its selection. A case is made for developing a contained facsimile, old growth forest on Mars, providing an oasis, proffering vital ecosystem functions (a forest bubble). It would serve as an extraterrestrial nature reserve (ETNR), psychological refuge and utilitarian botanic garden, supporting species of value to colonists for secondary metabolites (vitamins, flavours, perfumes, medicines, colours and mood enhancers). The design presented includes organisms that might tolerate local environmental variance and be assembled into a novel, bioregenerative forest ecosystem. This would differ from Earthly forests due to potential impact of local abiotic parameters on ecosystem functions, but it is argued that biotic support for space travel and colonization requires such developments. Consideration of the necessary species complement of an ETNR supports a view that it is not humanity alone that is reaching out to space, it is life, with all its diverse capabilities for colonization and establishment. Humans cannot, and will not, explore space alone because they did not evolve in isolation, being shaped over aeons by other species. Space will be travelled by a mutually supportive system of Terran organisms amongst which humans fit, exchanging metabolites and products of photosynthesis as they have always done.\",\"PeriodicalId\":13879,\"journal\":{\"name\":\"International Journal of Astrobiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Astrobiology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1017/s1473550422000398\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Astrobiology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/s1473550422000398","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 1

摘要

如果不控制人口增长,就必须牺牲自然区域。另一种选择是创造更多的栖息地,将火星地形化。然而,这需要在地球上建立基本的生态系统服务,目前地球上还没有人族物种。在短期内,如果确定了相互支持的物种互补性,那么在封闭的环境中组装人族类型的生态系统是可以想象的。接受了这一点,提出了一个可能形成早期森林环境的生物群落,并提出了其选择的理由。一个案例是在火星上开发一个封闭的、古老的森林,提供绿洲,提供重要的生态系统功能(森林泡沫)。它将作为地外自然保护区(ETNR)、心理避难所和实用植物园,为殖民者提供有价值的次生代谢产物(维生素、香料、香水、药物、色素和情绪增强剂)。所提出的设计包括可能耐受当地环境变化的生物,并将其组装成一个新的生物再生森林生态系统。由于当地非生物参数对生态系统功能的潜在影响,这与地球森林不同,但有人认为,对太空旅行和殖民的生物支持需要这样的发展。考虑到ETNR的必要物种补充,支持了这样一种观点,即并非只有人类在探索太空,而是生命,具有殖民和建立的各种能力。人类不能,也不会独自探索太空,因为它们不是孤立地进化的,是由其他物种长期塑造的。人类将通过一个相互支持的人族生物系统进入太空,像往常一样交换代谢产物和光合作用产物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Extraterrestrial nature reserves (ETNRs)
If human population growth is not controlled, natural areas must be sacrificed. An alternative is to create more habitat, terraforming Mars. However, this requires establishment of essential, ecosystem services on a planet currently unamenable to Terran species. Shorter term, assembling Terran-type ecosystems within contained environments is conceivable if mutually supportive species complements are determined. Accepting this, an assemblage of organisms that might form an early, forest environment is proposed, with rationale for its selection. A case is made for developing a contained facsimile, old growth forest on Mars, providing an oasis, proffering vital ecosystem functions (a forest bubble). It would serve as an extraterrestrial nature reserve (ETNR), psychological refuge and utilitarian botanic garden, supporting species of value to colonists for secondary metabolites (vitamins, flavours, perfumes, medicines, colours and mood enhancers). The design presented includes organisms that might tolerate local environmental variance and be assembled into a novel, bioregenerative forest ecosystem. This would differ from Earthly forests due to potential impact of local abiotic parameters on ecosystem functions, but it is argued that biotic support for space travel and colonization requires such developments. Consideration of the necessary species complement of an ETNR supports a view that it is not humanity alone that is reaching out to space, it is life, with all its diverse capabilities for colonization and establishment. Humans cannot, and will not, explore space alone because they did not evolve in isolation, being shaped over aeons by other species. Space will be travelled by a mutually supportive system of Terran organisms amongst which humans fit, exchanging metabolites and products of photosynthesis as they have always done.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Astrobiology
International Journal of Astrobiology 地学天文-地球科学综合
CiteScore
3.70
自引率
11.80%
发文量
45
审稿时长
>12 weeks
期刊介绍: International Journal of Astrobiology is the peer-reviewed forum for practitioners in this exciting interdisciplinary field. Coverage includes cosmic prebiotic chemistry, planetary evolution, the search for planetary systems and habitable zones, extremophile biology and experimental simulation of extraterrestrial environments, Mars as an abode of life, life detection in our solar system and beyond, the search for extraterrestrial intelligence, the history of the science of astrobiology, as well as societal and educational aspects of astrobiology. Occasionally an issue of the journal is devoted to the keynote plenary research papers from an international meeting. A notable feature of the journal is the global distribution of its authors.
期刊最新文献
Habitability constraints by nutrient availability in atmospheres of rocky exoplanets Succession of the bacterial community from a spacecraft assembly clean room when enriched in brines relevant to Mars Astroecology: bridging the gap between ecology and astrobiology Psychological aspects in unidentified anomalous phenomena (UAP) witnesses Children of time: the geological recency of intelligence and its implications for SETI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1