Jethro Vernon, P. Canyelles-Pericas, H. Torun, R. Binns, Wai Pang Ng, Qiang Wu, Y. Fu
{"title":"使用薄膜声波和开源电子设备进行呼吸监测、睡眠障碍检测和跟踪","authors":"Jethro Vernon, P. Canyelles-Pericas, H. Torun, R. Binns, Wai Pang Ng, Qiang Wu, Y. Fu","doi":"10.1063/10.0013471","DOIUrl":null,"url":null,"abstract":"Apnoea, a major sleep disorder, affects many adults and causes several issues, such as fatigue, high blood pressure, liver conditions, increased risk of type II diabetes, and heart problems. Therefore, advanced monitoring and diagnosing tools of apnoea disorders are needed to facilitate better treatment, with advantages such as accuracy, comfort of use, cost effectiveness, and embedded computation capabilities to recognise, store, process, and transmit time series data. In this work we present an adaptation of our apnoea-Pi open-source surface acoustic wave (SAW) platform (Apnoea-Pi) to monitor and recognise apnoea in patients. The platform is based on a thin-film SAW device using bimorph ZnO and Al structures, including those fabricated as Al foils or plates, to achieve breath tracking based on humidity and temperature changes. We applied open-source electronics and provided embedded computing characteristics for signal processing, data recognition, storage, and transmission of breath signals. We show that the thin-film SAW device out-performed standard and off-the-shelf capacitive electronic sensors in terms of their response and accuracy for human breath-tracking purposes. This in combination with embedded electronics makes a suitable platform for human breath monitoring and sleep disorder recognition.","PeriodicalId":35428,"journal":{"name":"Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Breath monitoring, sleep disorder detection, and tracking using thin-film acoustic waves and open-source electronics\",\"authors\":\"Jethro Vernon, P. Canyelles-Pericas, H. Torun, R. Binns, Wai Pang Ng, Qiang Wu, Y. Fu\",\"doi\":\"10.1063/10.0013471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Apnoea, a major sleep disorder, affects many adults and causes several issues, such as fatigue, high blood pressure, liver conditions, increased risk of type II diabetes, and heart problems. Therefore, advanced monitoring and diagnosing tools of apnoea disorders are needed to facilitate better treatment, with advantages such as accuracy, comfort of use, cost effectiveness, and embedded computation capabilities to recognise, store, process, and transmit time series data. In this work we present an adaptation of our apnoea-Pi open-source surface acoustic wave (SAW) platform (Apnoea-Pi) to monitor and recognise apnoea in patients. The platform is based on a thin-film SAW device using bimorph ZnO and Al structures, including those fabricated as Al foils or plates, to achieve breath tracking based on humidity and temperature changes. We applied open-source electronics and provided embedded computing characteristics for signal processing, data recognition, storage, and transmission of breath signals. We show that the thin-film SAW device out-performed standard and off-the-shelf capacitive electronic sensors in terms of their response and accuracy for human breath-tracking purposes. This in combination with embedded electronics makes a suitable platform for human breath monitoring and sleep disorder recognition.\",\"PeriodicalId\":35428,\"journal\":{\"name\":\"Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.1063/10.0013471\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1063/10.0013471","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Breath monitoring, sleep disorder detection, and tracking using thin-film acoustic waves and open-source electronics
Apnoea, a major sleep disorder, affects many adults and causes several issues, such as fatigue, high blood pressure, liver conditions, increased risk of type II diabetes, and heart problems. Therefore, advanced monitoring and diagnosing tools of apnoea disorders are needed to facilitate better treatment, with advantages such as accuracy, comfort of use, cost effectiveness, and embedded computation capabilities to recognise, store, process, and transmit time series data. In this work we present an adaptation of our apnoea-Pi open-source surface acoustic wave (SAW) platform (Apnoea-Pi) to monitor and recognise apnoea in patients. The platform is based on a thin-film SAW device using bimorph ZnO and Al structures, including those fabricated as Al foils or plates, to achieve breath tracking based on humidity and temperature changes. We applied open-source electronics and provided embedded computing characteristics for signal processing, data recognition, storage, and transmission of breath signals. We show that the thin-film SAW device out-performed standard and off-the-shelf capacitive electronic sensors in terms of their response and accuracy for human breath-tracking purposes. This in combination with embedded electronics makes a suitable platform for human breath monitoring and sleep disorder recognition.