附加荷载位置对悬臂挡土墙性能的影响

IF 1.7 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of the Mechanical Behavior of Materials Pub Date : 2023-01-01 DOI:10.1515/jmbm-2022-0247
Rowida S. Al-khafaji, M. A. Al-Obaydi, Qutayba N. Al-Saffar
{"title":"附加荷载位置对悬臂挡土墙性能的影响","authors":"Rowida S. Al-khafaji, M. A. Al-Obaydi, Qutayba N. Al-Saffar","doi":"10.1515/jmbm-2022-0247","DOIUrl":null,"url":null,"abstract":"Abstract In this study, the effect of location of surcharge load on the stability and behavior of the retaining wall under static and dynamic load has been considered. A cantilever retaining wall of 7 m height retained dry sandy soil with 50 kN/m2 surcharge load. Several parameters were taken into account in the numerical analysis, including the horizontal distance (X) from the edge of the wall to the surcharge load expressed as a ratio to the heel width (X/Bh = 0, 0.25, 0.5, 0.75, and 1), as well as the effect of different values of the earthquake's horizontal component (kh = 0.1, 0.2, and 0.3). Lateral earth pressure distribution decreases with increase (X/B h ) in the upper one third of the wall. The effect of surcharge location at the top of the wall disappears at X/B h = 0.25. Under dynamic load, the maximum displacement at the top of the wall is obtained at X/B h = 0.5. It is increased by about 4 times at k h = 0.3. The possibility of sliding increases by about 4.8 times once the k h increases from 0.1 to 0.3. There is a maximum increase in rotation by 2 times at k h = 0.1. In the dynamic case, the differential settlement decreases with increase in X/B h , and increases with the increase in k h .","PeriodicalId":17354,"journal":{"name":"Journal of the Mechanical Behavior of Materials","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effect of surcharge load location on the behavior of cantilever retaining wall\",\"authors\":\"Rowida S. Al-khafaji, M. A. Al-Obaydi, Qutayba N. Al-Saffar\",\"doi\":\"10.1515/jmbm-2022-0247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this study, the effect of location of surcharge load on the stability and behavior of the retaining wall under static and dynamic load has been considered. A cantilever retaining wall of 7 m height retained dry sandy soil with 50 kN/m2 surcharge load. Several parameters were taken into account in the numerical analysis, including the horizontal distance (X) from the edge of the wall to the surcharge load expressed as a ratio to the heel width (X/Bh = 0, 0.25, 0.5, 0.75, and 1), as well as the effect of different values of the earthquake's horizontal component (kh = 0.1, 0.2, and 0.3). Lateral earth pressure distribution decreases with increase (X/B h ) in the upper one third of the wall. The effect of surcharge location at the top of the wall disappears at X/B h = 0.25. Under dynamic load, the maximum displacement at the top of the wall is obtained at X/B h = 0.5. It is increased by about 4 times at k h = 0.3. The possibility of sliding increases by about 4.8 times once the k h increases from 0.1 to 0.3. There is a maximum increase in rotation by 2 times at k h = 0.1. In the dynamic case, the differential settlement decreases with increase in X/B h , and increases with the increase in k h .\",\"PeriodicalId\":17354,\"journal\":{\"name\":\"Journal of the Mechanical Behavior of Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Mechanical Behavior of Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jmbm-2022-0247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jmbm-2022-0247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

摘要本研究考虑了附加荷载位置对挡土墙静、动荷载作用下稳定性和性能的影响。7 m高的悬臂挡土墙保留了50 kN/m2附加荷载的干沙土。数值分析中考虑了几个参数,包括从墙体边缘到附加荷载的水平距离(X),表示为与脚跟宽度的比值(X/Bh = 0, 0.25, 0.5, 0.75和1),以及地震水平分量不同值(kh = 0.1, 0.2和0.3)的影响。上1 / 3墙侧土压力分布随X/B h的增大而减小。当X/B h = 0.25时,壁面顶部附加物位置的影响消失。动荷载作用下,墙体顶部最大位移在X/ h = 0.5时得到。当k h = 0.3时,它增加了约4倍。当k h从0.1增加到0.3时,滑动的可能性增加约4.8倍。在k h = 0.1时,旋转最大增加2倍。动态情况下,沉降差随X/B h的增大而减小,随k h的增大而增大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of surcharge load location on the behavior of cantilever retaining wall
Abstract In this study, the effect of location of surcharge load on the stability and behavior of the retaining wall under static and dynamic load has been considered. A cantilever retaining wall of 7 m height retained dry sandy soil with 50 kN/m2 surcharge load. Several parameters were taken into account in the numerical analysis, including the horizontal distance (X) from the edge of the wall to the surcharge load expressed as a ratio to the heel width (X/Bh = 0, 0.25, 0.5, 0.75, and 1), as well as the effect of different values of the earthquake's horizontal component (kh = 0.1, 0.2, and 0.3). Lateral earth pressure distribution decreases with increase (X/B h ) in the upper one third of the wall. The effect of surcharge location at the top of the wall disappears at X/B h = 0.25. Under dynamic load, the maximum displacement at the top of the wall is obtained at X/B h = 0.5. It is increased by about 4 times at k h = 0.3. The possibility of sliding increases by about 4.8 times once the k h increases from 0.1 to 0.3. There is a maximum increase in rotation by 2 times at k h = 0.1. In the dynamic case, the differential settlement decreases with increase in X/B h , and increases with the increase in k h .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the Mechanical Behavior of Materials
Journal of the Mechanical Behavior of Materials Materials Science-Materials Science (miscellaneous)
CiteScore
3.00
自引率
11.10%
发文量
76
审稿时长
30 weeks
期刊介绍: The journal focuses on the micromechanics and nanomechanics of materials, the relationship between structure and mechanical properties, material instabilities and fracture, as well as size effects and length/time scale transitions. Articles on cutting edge theory, simulations and experiments – used as tools for revealing novel material properties and designing new devices for structural, thermo-chemo-mechanical, and opto-electro-mechanical applications – are encouraged. Synthesis/processing and related traditional mechanics/materials science themes are not within the scope of JMBM. The Editorial Board also organizes topical issues on emerging areas by invitation. Topics Metals and Alloys Ceramics and Glasses Soils and Geomaterials Concrete and Cementitious Materials Polymers and Composites Wood and Paper Elastomers and Biomaterials Liquid Crystals and Suspensions Electromagnetic and Optoelectronic Materials High-energy Density Storage Materials Monument Restoration and Cultural Heritage Preservation Materials Nanomaterials Complex and Emerging Materials.
期刊最新文献
Evaluation of the mechanical and dynamic properties of scrimber wood produced from date palm fronds Performance of doubly reinforced concrete beams with GFRP bars Evaluating deformation in FRP boat: Effects of manufacturing parameters and working conditions Review of modeling schemes and machine learning algorithms for fluid rheological behavior analysis Blood flow analysis in narrow channel with activation energy and nonlinear thermal radiation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1