水下多径环境下基于ToA和TDOA的伯努利滤波器跟踪性能比较

IF 2 3区 工程技术 Q2 ENGINEERING, MARINE Polish Maritime Research Pub Date : 2023-03-01 DOI:10.2478/pomr-2023-0014
A. Gunes
{"title":"水下多径环境下基于ToA和TDOA的伯努利滤波器跟踪性能比较","authors":"A. Gunes","doi":"10.2478/pomr-2023-0014","DOIUrl":null,"url":null,"abstract":"Abstract Underwater localization and tracking is a challenging problem and Time-of-Arrival and Time-Difference-of-Arrival approaches are commonly used. However, the performance difference between these approaches is not well understood or analysed adequately. There are some analytical studies for terrestrial applications with the assumption that the signal arrival times are not correlated. However, this assumption is not valid for underwater propagation. To present the distinct nature of the problem under the water, a high-fidelity simulation is required. In this study, Time-of-Arrival and Time-Difference-of-Arrival approaches are compared using a ray tracing based propagation model. Moreover, basic methods to mitigate the multipath propagation problem are also implemented for Bernoulli filters. Since the Bernoulli filter is a joint detection and tracking filter, the detection performance is also analysed. Comparisons are done for all combinations of filter and measurement approaches. The results can help to design underwater localization systems better suited to the needs.","PeriodicalId":49681,"journal":{"name":"Polish Maritime Research","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Performance Comparison of ToA and TDOA Based Tracking In Underwater Multipath Environments Using Bernoulli Filter\",\"authors\":\"A. Gunes\",\"doi\":\"10.2478/pomr-2023-0014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Underwater localization and tracking is a challenging problem and Time-of-Arrival and Time-Difference-of-Arrival approaches are commonly used. However, the performance difference between these approaches is not well understood or analysed adequately. There are some analytical studies for terrestrial applications with the assumption that the signal arrival times are not correlated. However, this assumption is not valid for underwater propagation. To present the distinct nature of the problem under the water, a high-fidelity simulation is required. In this study, Time-of-Arrival and Time-Difference-of-Arrival approaches are compared using a ray tracing based propagation model. Moreover, basic methods to mitigate the multipath propagation problem are also implemented for Bernoulli filters. Since the Bernoulli filter is a joint detection and tracking filter, the detection performance is also analysed. Comparisons are done for all combinations of filter and measurement approaches. The results can help to design underwater localization systems better suited to the needs.\",\"PeriodicalId\":49681,\"journal\":{\"name\":\"Polish Maritime Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polish Maritime Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2478/pomr-2023-0014\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish Maritime Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/pomr-2023-0014","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 1

摘要

摘要水下定位和跟踪是一个具有挑战性的问题,通常使用到达时间和到达时间差方法。然而,这些方法之间的性能差异并没有得到很好的理解或充分的分析。有一些针对地面应用的分析研究假设信号到达时间不相关。然而,这种假设对于水下传播是无效的。为了呈现水下问题的独特性质,需要进行高保真度模拟。在本研究中,使用基于射线追踪的传播模型对到达时间和到达时间差方法进行了比较。此外,伯努利滤波器还实现了缓解多径传播问题的基本方法。由于伯努利滤波器是一个联合检测和跟踪滤波器,因此还分析了检测性能。对滤波器和测量方法的所有组合进行了比较。研究结果有助于设计更适合需求的水下定位系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance Comparison of ToA and TDOA Based Tracking In Underwater Multipath Environments Using Bernoulli Filter
Abstract Underwater localization and tracking is a challenging problem and Time-of-Arrival and Time-Difference-of-Arrival approaches are commonly used. However, the performance difference between these approaches is not well understood or analysed adequately. There are some analytical studies for terrestrial applications with the assumption that the signal arrival times are not correlated. However, this assumption is not valid for underwater propagation. To present the distinct nature of the problem under the water, a high-fidelity simulation is required. In this study, Time-of-Arrival and Time-Difference-of-Arrival approaches are compared using a ray tracing based propagation model. Moreover, basic methods to mitigate the multipath propagation problem are also implemented for Bernoulli filters. Since the Bernoulli filter is a joint detection and tracking filter, the detection performance is also analysed. Comparisons are done for all combinations of filter and measurement approaches. The results can help to design underwater localization systems better suited to the needs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polish Maritime Research
Polish Maritime Research 工程技术-工程:海洋
CiteScore
3.70
自引率
45.00%
发文量
20
审稿时长
>12 weeks
期刊介绍: The scope of the journal covers selected issues related to all phases of product lifecycle and corresponding technologies for offshore floating and fixed structures and their components. All researchers are invited to submit their original papers for peer review and publications related to methods of the design; production and manufacturing; maintenance and operational processes of such technical items as: all types of vessels and their equipment, fixed and floating offshore units and their components, autonomous underwater vehicle (AUV) and remotely operated vehicle (ROV). We welcome submissions from these fields in the following technical topics: ship hydrodynamics: buoyancy and stability; ship resistance and propulsion, etc., structural integrity of ship and offshore unit structures: materials; welding; fatigue and fracture, etc., marine equipment: ship and offshore unit power plants: overboarding equipment; etc.
期刊最新文献
Automatic Classification of Unexploded Ordnance (UXO) Based on Deep Learning Neural Networks (DLNNS) Hydrodynamic Loads on a Semi-Submersible Platform Supporting a Wind Turbine Under a Mooring System With Buoys Investigating Fuel Injection Strategies to Enhance Ship Energy Efficiency in Wave Conditions Practical Finite-Time Event-Triggered Control of Underactuated Surface Vessels in Presence of False Data Injection Attacks Effects on of Blended Biodiesel and Heavy Oil on Engine Combustion and Black Carbon Emissions of a Low-Speed Two-Stroke Engine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1