Abstract Two-stroke, low-speed diesel engines are widely used in large ships due to their good performance and fuel economy. However, there have been few studies of the effects of lubricating oils on the vibration of two-stroke, low-speed diesel engines. In this work, the effects of three different lubricating oils on the vibration characteristics of a low-speed engine are investigated, using the frequency domain, time-frequency domain, fast Fourier transform (FFT) and short-time Fourier transform (STFT) methods. The results show that non-invasive condition monitoring of the wear to a cylinder liner in a low-speed marine engine can be successfully achieved based on vibration signals. Both the FFT and STFT methods are capable of capturing information about combustion in the cylinder online in real time, and the STFT method also provides the ability to visualise the results with more comprehensive information. From the online condition monitoring of vibration signals, cylinder lubricants with medium viscosity and medium alkali content are found to have the best wear protection properties. This result is consistent with those of an elemental analysis of cylinder lubrication properties and an analysis of the data measured from a piston lifted from the cylinder after 300 h of engine operation.
{"title":"An Experimental Study of the Effects of Cylinder Lubricating Oils on the Vibration Characteristics of a Two-Stroke Low-Speed Marine Diesel Engine","authors":"Gang Wu, Guodong Jiang, Changsheng Chen, Guohe Jiang, Xigang Pu, Bi-we Chen","doi":"10.2478/pomr-2023-0062","DOIUrl":"https://doi.org/10.2478/pomr-2023-0062","url":null,"abstract":"Abstract Two-stroke, low-speed diesel engines are widely used in large ships due to their good performance and fuel economy. However, there have been few studies of the effects of lubricating oils on the vibration of two-stroke, low-speed diesel engines. In this work, the effects of three different lubricating oils on the vibration characteristics of a low-speed engine are investigated, using the frequency domain, time-frequency domain, fast Fourier transform (FFT) and short-time Fourier transform (STFT) methods. The results show that non-invasive condition monitoring of the wear to a cylinder liner in a low-speed marine engine can be successfully achieved based on vibration signals. Both the FFT and STFT methods are capable of capturing information about combustion in the cylinder online in real time, and the STFT method also provides the ability to visualise the results with more comprehensive information. From the online condition monitoring of vibration signals, cylinder lubricants with medium viscosity and medium alkali content are found to have the best wear protection properties. This result is consistent with those of an elemental analysis of cylinder lubrication properties and an analysis of the data measured from a piston lifted from the cylinder after 300 h of engine operation.","PeriodicalId":49681,"journal":{"name":"Polish Maritime Research","volume":"1112 1","pages":"92 - 101"},"PeriodicalIF":2.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139019356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract The digitalisation in the ship design sector is currently applied to the design process itself and is well defined, partially standardised and practically implemented by both independent design companies and the design departments of shipyards. The situation is similar in other sectors of engineering. However, the requirements for the digitalisation of other processes in design and engineering companies have not previously been studied, and the limited financial resources of ship design companies mean that there is a need for research on the digitalisation needs of multidisciplinary ship design companies. The implementation of building information modelling (BIM) solutions is costly for design companies and generates benefits mainly for shipyards and shipowners. The lack of benefits for design companies leads to the hesitation of managers whenever digitalisation is considered; the scope and scale of the digitalisation, as well as the selected software and BIM level, are defined by the shipyard requirements. The participation and support of management in the digitalisation process is one of the key success factors; the expected benefits caused by digitalisation for the organisation will increase the motivation of managers to invest limited resources in digitalisation. There are no data that indicate the processes with a high potential for digitalisation and the scale of expected improvements in ship design companies; therefore, research in this area was performed with a group of project managers from design and engineering companies. The research focused on collecting the opinions and experiences of the managers related to the manual management of resources and comparing the poll results with the conclusions from the enterprise resource planning (ERP) system data analyses. The paper analyses if the digital automation of the resource management process can lead to the substantial improvement of the operations of multi-project, multidisciplinary engineering ship design companies.
{"title":"Human Resource Management Digitalisation in Multidisciplinary Ship Design Companies","authors":"Piotr Bilon, Wojciech Litwin","doi":"10.2478/pomr-2023-0065","DOIUrl":"https://doi.org/10.2478/pomr-2023-0065","url":null,"abstract":"Abstract The digitalisation in the ship design sector is currently applied to the design process itself and is well defined, partially standardised and practically implemented by both independent design companies and the design departments of shipyards. The situation is similar in other sectors of engineering. However, the requirements for the digitalisation of other processes in design and engineering companies have not previously been studied, and the limited financial resources of ship design companies mean that there is a need for research on the digitalisation needs of multidisciplinary ship design companies. The implementation of building information modelling (BIM) solutions is costly for design companies and generates benefits mainly for shipyards and shipowners. The lack of benefits for design companies leads to the hesitation of managers whenever digitalisation is considered; the scope and scale of the digitalisation, as well as the selected software and BIM level, are defined by the shipyard requirements. The participation and support of management in the digitalisation process is one of the key success factors; the expected benefits caused by digitalisation for the organisation will increase the motivation of managers to invest limited resources in digitalisation. There are no data that indicate the processes with a high potential for digitalisation and the scale of expected improvements in ship design companies; therefore, research in this area was performed with a group of project managers from design and engineering companies. The research focused on collecting the opinions and experiences of the managers related to the manual management of resources and comparing the poll results with the conclusions from the enterprise resource planning (ERP) system data analyses. The paper analyses if the digital automation of the resource management process can lead to the substantial improvement of the operations of multi-project, multidisciplinary engineering ship design companies.","PeriodicalId":49681,"journal":{"name":"Polish Maritime Research","volume":"109 ","pages":"120 - 128"},"PeriodicalIF":2.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139015808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Se-yeol An, Hyeon-won Jeong, Ohyoung Kim, W. Jaewoo Shim
Abstract This study investigates the effects of sway and roll excitations on sloshing liquid loads in a tank, using Ansys Fluent software. The model considered in the study is a 1:50 scaled membrane-type tank, based on a KC-1 membrane LNG tank designed by Korea Gas Corporation (KOGAS). The volume of fluid (VOF) method is used to track the free surface inside the tank, and the standard k-ε model is applied to express the turbulent flow of the liquid. To explore the motion of the tank under excitation, a user-defined function (UDF) and a dynamic mesh technique are employed to control the external forces exerted on the tank through its motion. The results, in the form of time series data on the sloshing pressures in the tank under pure sway, roll, and coupled sway-roll, are analysed, with specific ranges for the excitation amplitudes and frequencies. We show that variations in excitation frequency and amplitude significantly influence the sloshing loads. Sloshing loads are found to intensify when the excitation frequency matches the tank’s primary natural frequency, 1.0 ω1′. Furthermore, with coupled sway-roll excitations, the sloshing loads are weakened when the sway and roll are in-phase and are intensified when these are out-of-phase. Fast Fourier transform analysis provides insights into the frequency domain, showing that the dominant frequency is 0.88 Hz and it is approximately equal to the tank’s primary natural frequency, 1.0 ω1′.
{"title":"Effects of Sway and Roll Excitations on Sloshing Loads in a KC-1 Membrane LNG Tank","authors":"Se-yeol An, Hyeon-won Jeong, Ohyoung Kim, W. Jaewoo Shim","doi":"10.2478/pomr-2023-0057","DOIUrl":"https://doi.org/10.2478/pomr-2023-0057","url":null,"abstract":"Abstract This study investigates the effects of sway and roll excitations on sloshing liquid loads in a tank, using Ansys Fluent software. The model considered in the study is a 1:50 scaled membrane-type tank, based on a KC-1 membrane LNG tank designed by Korea Gas Corporation (KOGAS). The volume of fluid (VOF) method is used to track the free surface inside the tank, and the standard k-ε model is applied to express the turbulent flow of the liquid. To explore the motion of the tank under excitation, a user-defined function (UDF) and a dynamic mesh technique are employed to control the external forces exerted on the tank through its motion. The results, in the form of time series data on the sloshing pressures in the tank under pure sway, roll, and coupled sway-roll, are analysed, with specific ranges for the excitation amplitudes and frequencies. We show that variations in excitation frequency and amplitude significantly influence the sloshing loads. Sloshing loads are found to intensify when the excitation frequency matches the tank’s primary natural frequency, 1.0 ω1′. Furthermore, with coupled sway-roll excitations, the sloshing loads are weakened when the sway and roll are in-phase and are intensified when these are out-of-phase. Fast Fourier transform analysis provides insights into the frequency domain, showing that the dominant frequency is 0.88 Hz and it is approximately equal to the tank’s primary natural frequency, 1.0 ω1′.","PeriodicalId":49681,"journal":{"name":"Polish Maritime Research","volume":"30 3","pages":"43 - 53"},"PeriodicalIF":2.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139016452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Propeller performance is typically considered under clean conditions, despite the fact that fouling is an inevitable phenomenon for propellers. The main objective of this study is to investigate the effects of roughness due to fouling on the performance of a propeller using a CFD simulation in conjunction with the roughness function model. A simulation of a clean propeller is verified for a five-blade propeller model using existing experimental results. A roughness function model is then suggested based on existing measured roughness data. The simulations are extended for the same propeller under varying severities of roughness. Initially, it is concluded that KT and ηo gradually decrease with increasing fouling roughness, while KQ increases, compared to smooth propeller. For instance, at J=1.2 for medium calcareous fouling, KT is reduced by about 26%, KQ increases by about 7.0%, and ηo decreases by 30.9%. In addition, for the rough propeller, the extra power required is defined as the specific sea margin (SSM) to compensate for the power loss. A slight roughness causes a large decrease in ηo. A propeller painted with foul-release paint and an unpainted propeller are found to require 2.7% SSM and 57.8% SSM over four years of service, respectively. Finally, the use of foul-release paints for propeller painting is strongly advised.
{"title":"Effects of Propeller Fouling on the Hydrodynamic Performance of a Marine Propeller","authors":"A. Zinati, M. Ketabdari, H. Zeraatgar","doi":"10.2478/pomr-2023-0059","DOIUrl":"https://doi.org/10.2478/pomr-2023-0059","url":null,"abstract":"Abstract Propeller performance is typically considered under clean conditions, despite the fact that fouling is an inevitable phenomenon for propellers. The main objective of this study is to investigate the effects of roughness due to fouling on the performance of a propeller using a CFD simulation in conjunction with the roughness function model. A simulation of a clean propeller is verified for a five-blade propeller model using existing experimental results. A roughness function model is then suggested based on existing measured roughness data. The simulations are extended for the same propeller under varying severities of roughness. Initially, it is concluded that KT and ηo gradually decrease with increasing fouling roughness, while KQ increases, compared to smooth propeller. For instance, at J=1.2 for medium calcareous fouling, KT is reduced by about 26%, KQ increases by about 7.0%, and ηo decreases by 30.9%. In addition, for the rough propeller, the extra power required is defined as the specific sea margin (SSM) to compensate for the power loss. A slight roughness causes a large decrease in ηo. A propeller painted with foul-release paint and an unpainted propeller are found to require 2.7% SSM and 57.8% SSM over four years of service, respectively. Finally, the use of foul-release paints for propeller painting is strongly advised.","PeriodicalId":49681,"journal":{"name":"Polish Maritime Research","volume":"261 3","pages":"61 - 73"},"PeriodicalIF":2.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139022093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract The article provides proof that the diagnostics of marine internal combustion engines and other ship power plant machines should take into account the randomness and unpredictability of certain events, such as wear, damage, the variations of mechanical and thermal loads, etc., which take place during machine operation. In the article, the energy E, like the other forms (methods) that it can be converted into (heat and work), is considered the random variable Et; at time t, this variable has the mean value E¯t {bar E_t} , which is the observed value of the statistic E¯st {bar E_{st}} with an asymptotically normal distribution N(E(Et),σtn) Nleft( {Eleft( {{E_t}} right),{{{sigma _t}} over {sqrt n }}} right) , irrespective of the functional form of the random variable Et. A proof is given that shows that the expected value estimated in the above way, considering the time t of the performance of task Z by a marine internal combustion engine or other ship power plant machine, can be used to determine the machine’s possible action (DM). When compared to the required action (DW) needed for task Z to be performed, this possible action makes it possible to formulate an operating diagnosis concerning whether the engine or machine of concern is able to perform task Z. It is assumed that an energy device of this type is able to perform a given task when the inequality DM≥DW holds. Otherwise, when DM < DW, the device cannot perform the task for which it was adopted in the design and manufacturing phase, which means that it is in the incapability state, although it still can be started and convert energy into the form of heat or work..
摘要 文章证明,船用内燃机和其他船舶动力装置机器的诊断应考虑到某些事件的随机性和不可预测性,如机器运行期间发生的磨损、损坏、机械和热负荷变化等。在本文中,能量 E 与它可以转换成的其他形式(方法)(热量和功)一样,被视为随机变量 Et;在时间 t,该变量的平均值为 E¯t {bar E_t} ,即能量 E 的观测值。Nleft( {Eleft( {{E_t}} right),{{/{sigma _t}})。over {{sqrt n }}}right) ,与随机变量 Et 的函数形式无关。证明表明,考虑到船用内燃机或其他船舶动力装置机器执行任务 Z 的时间 t,用上述方法估计的期望值可用来确定机器的可能行动 (DM)。当与执行任务 Z 所需的必要动作 (DW) 相比较时,该可能动作可用于制定有关发动机或相关机器是否能够执行任务 Z 的运行诊断。否则,当 DM < DW 时,该设备无法执行设计和制造阶段所采用的任务,这意味着它处于无能力状态,尽管它仍然可以启动并将能量转换为热量或功的形式。
{"title":"Quantumness in Diagnostics of Marine Internal Combustion Engines and Other Ship Power Plant Machines","authors":"J. Girtler, Jacek Rudnicki","doi":"10.2478/pomr-2023-0064","DOIUrl":"https://doi.org/10.2478/pomr-2023-0064","url":null,"abstract":"Abstract The article provides proof that the diagnostics of marine internal combustion engines and other ship power plant machines should take into account the randomness and unpredictability of certain events, such as wear, damage, the variations of mechanical and thermal loads, etc., which take place during machine operation. In the article, the energy E, like the other forms (methods) that it can be converted into (heat and work), is considered the random variable Et; at time t, this variable has the mean value E¯t {bar E_t} , which is the observed value of the statistic E¯st {bar E_{st}} with an asymptotically normal distribution N(E(Et),σtn) Nleft( {Eleft( {{E_t}} right),{{{sigma _t}} over {sqrt n }}} right) , irrespective of the functional form of the random variable Et. A proof is given that shows that the expected value estimated in the above way, considering the time t of the performance of task Z by a marine internal combustion engine or other ship power plant machine, can be used to determine the machine’s possible action (DM). When compared to the required action (DW) needed for task Z to be performed, this possible action makes it possible to formulate an operating diagnosis concerning whether the engine or machine of concern is able to perform task Z. It is assumed that an energy device of this type is able to perform a given task when the inequality DM≥DW holds. Otherwise, when DM < DW, the device cannot perform the task for which it was adopted in the design and manufacturing phase, which means that it is in the incapability state, although it still can be started and convert energy into the form of heat or work..","PeriodicalId":49681,"journal":{"name":"Polish Maritime Research","volume":"24 ","pages":"110 - 119"},"PeriodicalIF":2.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139025598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Ballast water management is an effective measure to ensure that organisms, bacteria and viruses do not migrate with the ballast water to other areas. In 2004, the International Maritime Organization adopted the International Convention on the Control and Management of Ballast Water and Ship Sediments, which regulates issues related to ballast water management. Many technologies have been researched and developed, and of these, the use of UV rays in combination with filter membranes has been shown to have many advantages and to meet the requirements of the Convention. However, the use of UV furnaces in ballast water treatment systems requires a very large capacity, involving the use of many high-power UV lamps. This not only consumes large amounts of electrical energy, but is also expensive. It is therefore necessary to find an optimal algorithm to enable the UV radiation for the UV controller in the ballast water sterilisation process to be controlled in a reasonable and effective manner. This controller helps to prolong the life of the UV lamp, reduce power consumption and ensure effective sterilisation. This paper presents a UV control algorithm and a controller for a UV furnace for a ballast water treatment system installed on a ship. The results of tests on vessels illustrate the effect of the proposed UV controller.
{"title":"Optimal UV Quantity for a Ballast Water Treatment System for Compliance with Imo Standards","authors":"Nguyen Dinh Thach, P. V. Hung","doi":"10.2478/pomr-2023-0056","DOIUrl":"https://doi.org/10.2478/pomr-2023-0056","url":null,"abstract":"Abstract Ballast water management is an effective measure to ensure that organisms, bacteria and viruses do not migrate with the ballast water to other areas. In 2004, the International Maritime Organization adopted the International Convention on the Control and Management of Ballast Water and Ship Sediments, which regulates issues related to ballast water management. Many technologies have been researched and developed, and of these, the use of UV rays in combination with filter membranes has been shown to have many advantages and to meet the requirements of the Convention. However, the use of UV furnaces in ballast water treatment systems requires a very large capacity, involving the use of many high-power UV lamps. This not only consumes large amounts of electrical energy, but is also expensive. It is therefore necessary to find an optimal algorithm to enable the UV radiation for the UV controller in the ballast water sterilisation process to be controlled in a reasonable and effective manner. This controller helps to prolong the life of the UV lamp, reduce power consumption and ensure effective sterilisation. This paper presents a UV control algorithm and a controller for a UV furnace for a ballast water treatment system installed on a ship. The results of tests on vessels illustrate the effect of the proposed UV controller.","PeriodicalId":49681,"journal":{"name":"Polish Maritime Research","volume":"191 ","pages":"31 - 42"},"PeriodicalIF":2.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139015428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract This report examines the feasibility and impact of retrofitting the bulbous bow on a general cargo ship, in terms of the energy efficiency operational index (EEOI), in the areas of Western Europe and the Eastern Mediterranean. Three ship forms were developed and analysed: with a bulbous bow, without a bulbous bow, and with a modified bulbous bow. The goal in developing the ship forms and conducting the analysis was to achieve minimal differences in the ship’s characteristics with the same volumetric displacement, aided by PolyCAD software. A route was selected between two ports: Varna and Rotterdam. The labour intensity of the bulbous bow retrofitting process was evaluated and approximate values of labours costs and cost for the task were determined. The results obtained for resistance during ship motion, EEOI, and fuel consumption reductions, or increases, were compared against the retrofitting values. The return cost of retrofitting is evaluated and measured in terms of fuel saved.
{"title":"Retrofitting the Bow of a General Cargo Vessel Andevaluating Energy Efficiency Operational Index","authors":"Yordan Denev","doi":"10.2478/pomr-2023-0054","DOIUrl":"https://doi.org/10.2478/pomr-2023-0054","url":null,"abstract":"Abstract This report examines the feasibility and impact of retrofitting the bulbous bow on a general cargo ship, in terms of the energy efficiency operational index (EEOI), in the areas of Western Europe and the Eastern Mediterranean. Three ship forms were developed and analysed: with a bulbous bow, without a bulbous bow, and with a modified bulbous bow. The goal in developing the ship forms and conducting the analysis was to achieve minimal differences in the ship’s characteristics with the same volumetric displacement, aided by PolyCAD software. A route was selected between two ports: Varna and Rotterdam. The labour intensity of the bulbous bow retrofitting process was evaluated and approximate values of labours costs and cost for the task were determined. The results obtained for resistance during ship motion, EEOI, and fuel consumption reductions, or increases, were compared against the retrofitting values. The return cost of retrofitting is evaluated and measured in terms of fuel saved.","PeriodicalId":49681,"journal":{"name":"Polish Maritime Research","volume":"41 7","pages":"17 - 23"},"PeriodicalIF":2.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139016763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jan Sierzputowski, A. Karczewski, Przemysław Krata
Abstract A sailing yacht is a human-centred product, the design of which revolves primarily around the wants and desires of the future owner. In most cases, these preferences are not measurable, such as a personal aesthetic feeling, or a need for comfort, speed, safety etc. The aims of this paper are to demonstrate that these preferences can be classified and represented numerically, and to show that they are correlated with the type of yacht owned. As a case study, the owner’s preferences for deck equipment are considered. These are determined by pairwise comparisons of the importance rankings for features previously defined by yacht owners, following the analytic hierarchy process (AHP) method. As a result, a quantitative representation of these preferences is established, and they are shown to be correlated with the type of yacht. The findings of the current study show that the yacht owners’ preferences can be represented numerically, leading to a utilitarian conclusion that concerns the support and even some degree of automation of the design process.
{"title":"Use of the AHP Method for Preference Determination in Yacht Design","authors":"Jan Sierzputowski, A. Karczewski, Przemysław Krata","doi":"10.2478/pomr-2023-0055","DOIUrl":"https://doi.org/10.2478/pomr-2023-0055","url":null,"abstract":"Abstract A sailing yacht is a human-centred product, the design of which revolves primarily around the wants and desires of the future owner. In most cases, these preferences are not measurable, such as a personal aesthetic feeling, or a need for comfort, speed, safety etc. The aims of this paper are to demonstrate that these preferences can be classified and represented numerically, and to show that they are correlated with the type of yacht owned. As a case study, the owner’s preferences for deck equipment are considered. These are determined by pairwise comparisons of the importance rankings for features previously defined by yacht owners, following the analytic hierarchy process (AHP) method. As a result, a quantitative representation of these preferences is established, and they are shown to be correlated with the type of yacht. The findings of the current study show that the yacht owners’ preferences can be represented numerically, leading to a utilitarian conclusion that concerns the support and even some degree of automation of the design process.","PeriodicalId":49681,"journal":{"name":"Polish Maritime Research","volume":"167 ","pages":"24 - 30"},"PeriodicalIF":2.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139021303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract The utilisation of the thermal emissions of modern ship power plants requires the development and implementation of essentially new methods of using low-temperature waste heat. Thermoacoustic technologies are able to effectively use low-temperature and cryogenic heat resources with a potential difference of 500–111 K. Thermoacoustic heat machines (TAHMs) are characterised by high reliability, simplicity and environmental safety. The wide implementation of thermoacoustic energy-saving systems is hampered by the low specific power and the difficulties of directly producing mechanical work. An efficient approach to converting acoustic energy into mechanical work entails the utilisation of axial pulse bidirectional turbines within thermoacoustic heat engines. These thermoacoustic turbogenerators represent comprehensive systems that consist of thermoacoustic primary movers with an electric generator actuated by an axial-pulse bidirectional turbine. The development of such a thermoacoustic turbogenerator requires several fundamental issues to be solved. For this purpose, a suitable experimental setup and a 3D computational fluid dynamics (CFD) model of a thermoacoustic engine (TAE) with bidirectional turbines were created. The research program involved conducting physical experiments and the CFD modelling of processes in a TAE resonator with an installed bidirectional turbine. The boundary and initial conditions for CFD calculations were based on empirical data. The adequacy of the developed numerical model was substantiated by the results of physical experiments. The CFD results showed that the most significant energy losses in bidirectional turbines are manifested in the output grid of the turbine.
摘要 现代船舶发电厂热排放的利用需要开发和实施新的低温废热利用方法。热声技术能够有效利用电位差为 500-111 K 的低温和低温热资源。热声热机(TAHM)的特点是可靠性高、操作简单和环保安全。热声节能系统的广泛应用受到比功率低和难以直接产生机械功的阻碍。将声能转化为机械功的有效方法是在热声热机中利用轴向脉冲双向涡轮。这些热声涡轮发电机是由热声原动机和由轴向脉冲双向涡轮驱动的发电机组成的综合系统。开发这种热声涡轮发电机需要解决几个基本问题。为此,我们创建了一个合适的实验装置和带有双向涡轮的热声发动机(TAE)的三维计算流体动力学(CFD)模型。研究计划包括在安装了双向涡轮机的热声发动机(TAE)谐振器中进行物理实验和 CFD 过程建模。CFD 计算的边界和初始条件以经验数据为基础。物理实验结果证明了所开发数值模型的适当性。CFD 结果表明,双向涡轮机最显著的能量损失体现在涡轮机的输出电网上。
{"title":"Exploration of a Model Thermoacoustic Turbogenerator with a Bidirectional Turbine","authors":"V. Korobko, S. Serbin, Huu Cuong Le","doi":"10.2478/pomr-2023-0063","DOIUrl":"https://doi.org/10.2478/pomr-2023-0063","url":null,"abstract":"Abstract The utilisation of the thermal emissions of modern ship power plants requires the development and implementation of essentially new methods of using low-temperature waste heat. Thermoacoustic technologies are able to effectively use low-temperature and cryogenic heat resources with a potential difference of 500–111 K. Thermoacoustic heat machines (TAHMs) are characterised by high reliability, simplicity and environmental safety. The wide implementation of thermoacoustic energy-saving systems is hampered by the low specific power and the difficulties of directly producing mechanical work. An efficient approach to converting acoustic energy into mechanical work entails the utilisation of axial pulse bidirectional turbines within thermoacoustic heat engines. These thermoacoustic turbogenerators represent comprehensive systems that consist of thermoacoustic primary movers with an electric generator actuated by an axial-pulse bidirectional turbine. The development of such a thermoacoustic turbogenerator requires several fundamental issues to be solved. For this purpose, a suitable experimental setup and a 3D computational fluid dynamics (CFD) model of a thermoacoustic engine (TAE) with bidirectional turbines were created. The research program involved conducting physical experiments and the CFD modelling of processes in a TAE resonator with an installed bidirectional turbine. The boundary and initial conditions for CFD calculations were based on empirical data. The adequacy of the developed numerical model was substantiated by the results of physical experiments. The CFD results showed that the most significant energy losses in bidirectional turbines are manifested in the output grid of the turbine.","PeriodicalId":49681,"journal":{"name":"Polish Maritime Research","volume":"45 36","pages":"102 - 109"},"PeriodicalIF":2.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138989063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract The functional layout of fire safety equipment in technical spaces of ships is a time-consuming process. When designing a ship fire protection system, the designer must manually position each system component in such a way as to meet the requirements of regulations arising from the technical specification, various legal regulations of maritime conventions and classification societies of the vessel to be designed. Layout of fire hydrants assisted by a computer that is based on pre-defined criteria and various constraints could significantly support the designer in working easier and faster. This paper presents a prototype computer-aided design system that enables optimal placement of fire hydrants using the metaheuristic Particle Swarm Optimization (PSO) algorithm. This algorithm was used in Rhinoceros 3D software with its Grasshopper plugin for visualizing the arrangement of fire safety equipment. Various solution arrangements compared with the fire hydrant placement in real ships are illustrated by a case study. Demonstrating how design work can be facilitated and what potential benefits can be achieved are presented as well.
摘要 船舶技术空间消防安全设备的功能布局是一个耗时的过程。在设计船舶消防系统时,设计人员必须手动定位每个系统组件,以满足所设计船舶的技术规范、海事公约和船级社的各种法律规定的要求。根据预先确定的标准和各种约束条件,通过计算机辅助进行消火栓布局,可以大大提高设计人员的工作效率。本文介绍了一种计算机辅助设计系统原型,该系统利用元启发式粒子群优化(PSO)算法实现了消火栓的最佳布置。该算法被用于 Rhinoceros 3D 软件及其 Grasshopper 插件,以实现消防安全设备布置的可视化。通过一个案例研究,说明了与实际船舶中消火栓布置相比较的各种解决方案安排。此外,还展示了如何促进设计工作以及可实现的潜在效益。
{"title":"Computer-Aided System for Layout of Fire Hydrants on Boards Designed Vessel Using the Particle Swarm Optimization Algorithm","authors":"Piotr Gomułka","doi":"10.2478/pomr-2023-0053","DOIUrl":"https://doi.org/10.2478/pomr-2023-0053","url":null,"abstract":"Abstract The functional layout of fire safety equipment in technical spaces of ships is a time-consuming process. When designing a ship fire protection system, the designer must manually position each system component in such a way as to meet the requirements of regulations arising from the technical specification, various legal regulations of maritime conventions and classification societies of the vessel to be designed. Layout of fire hydrants assisted by a computer that is based on pre-defined criteria and various constraints could significantly support the designer in working easier and faster. This paper presents a prototype computer-aided design system that enables optimal placement of fire hydrants using the metaheuristic Particle Swarm Optimization (PSO) algorithm. This algorithm was used in Rhinoceros 3D software with its Grasshopper plugin for visualizing the arrangement of fire safety equipment. Various solution arrangements compared with the fire hydrant placement in real ships are illustrated by a case study. Demonstrating how design work can be facilitated and what potential benefits can be achieved are presented as well.","PeriodicalId":49681,"journal":{"name":"Polish Maritime Research","volume":"495 ","pages":"4 - 16"},"PeriodicalIF":2.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138992686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}