{"title":"利用廊道选择桥梁进行震区道路网改造","authors":"Rodrigo Silva-Lopez, J. Baker","doi":"10.1080/23789689.2022.2108594","DOIUrl":null,"url":null,"abstract":"ABSTRACT This study proposes the use of bridge clusters, defined as Corridors, to support optimal bridge retrofitting strategies for seismic risk management of road networks. A Corridor is defined as a set of bridges that works jointly to ensure connectivity and traffic flow between different areas of a region. To detect Corridors, a Markov Clustering Algorithm is proposed. Using the San Francisco Bay Area road network as a testbed, this clustering technique selects sets of bridges that correspond to main traffic arteries such as highways and high-capacity road segments. After Corridors have been detected, a two-stage stochastic optimization is implemented to detect which bridges should be retrofitted to ensure an acceptable network performance. This optimization couples retrofitting actions in a Corridor with the repair actions to damaged bridges after an earthquake. The Corridors-Supported Optimization decreases road network disruption more than other approaches based on ranking bridges according to their traffic capacity or location in the network.","PeriodicalId":45395,"journal":{"name":"Sustainable and Resilient Infrastructure","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Use of corridors to select bridges to retrofit in road networks in seismic regions\",\"authors\":\"Rodrigo Silva-Lopez, J. Baker\",\"doi\":\"10.1080/23789689.2022.2108594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT This study proposes the use of bridge clusters, defined as Corridors, to support optimal bridge retrofitting strategies for seismic risk management of road networks. A Corridor is defined as a set of bridges that works jointly to ensure connectivity and traffic flow between different areas of a region. To detect Corridors, a Markov Clustering Algorithm is proposed. Using the San Francisco Bay Area road network as a testbed, this clustering technique selects sets of bridges that correspond to main traffic arteries such as highways and high-capacity road segments. After Corridors have been detected, a two-stage stochastic optimization is implemented to detect which bridges should be retrofitted to ensure an acceptable network performance. This optimization couples retrofitting actions in a Corridor with the repair actions to damaged bridges after an earthquake. The Corridors-Supported Optimization decreases road network disruption more than other approaches based on ranking bridges according to their traffic capacity or location in the network.\",\"PeriodicalId\":45395,\"journal\":{\"name\":\"Sustainable and Resilient Infrastructure\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable and Resilient Infrastructure\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23789689.2022.2108594\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable and Resilient Infrastructure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23789689.2022.2108594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Use of corridors to select bridges to retrofit in road networks in seismic regions
ABSTRACT This study proposes the use of bridge clusters, defined as Corridors, to support optimal bridge retrofitting strategies for seismic risk management of road networks. A Corridor is defined as a set of bridges that works jointly to ensure connectivity and traffic flow between different areas of a region. To detect Corridors, a Markov Clustering Algorithm is proposed. Using the San Francisco Bay Area road network as a testbed, this clustering technique selects sets of bridges that correspond to main traffic arteries such as highways and high-capacity road segments. After Corridors have been detected, a two-stage stochastic optimization is implemented to detect which bridges should be retrofitted to ensure an acceptable network performance. This optimization couples retrofitting actions in a Corridor with the repair actions to damaged bridges after an earthquake. The Corridors-Supported Optimization decreases road network disruption more than other approaches based on ranking bridges according to their traffic capacity or location in the network.
期刊介绍:
Sustainable and Resilient Infrastructure is an interdisciplinary journal that focuses on the sustainable development of resilient communities.
Sustainability is defined in relation to the ability of infrastructure to address the needs of the present without sacrificing the ability of future generations to meet their needs. Resilience is considered in relation to both natural hazards (like earthquakes, tsunami, hurricanes, cyclones, tornado, flooding and drought) and anthropogenic hazards (like human errors and malevolent attacks.) Resilience is taken to depend both on the performance of the built and modified natural environment and on the contextual characteristics of social, economic and political institutions. Sustainability and resilience are considered both for physical and non-physical infrastructure.