利用人工智能技术表征PM硼钢液相烧结过程的机理

IF 1.9 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Powder Metallurgy Pub Date : 2022-03-25 DOI:10.1080/00325899.2022.2055888
Simon Gélinas, C. Blais
{"title":"利用人工智能技术表征PM硼钢液相烧结过程的机理","authors":"Simon Gélinas, C. Blais","doi":"10.1080/00325899.2022.2055888","DOIUrl":null,"url":null,"abstract":"ABSTRACT Liquid phase sintering (LPS) of powder metallurgy (PM) components is a well-recognised strategy to enhance the densification of pressed-and-sintered compacts. This work reports the investigation on the liquid phase formation when a Fe–Ni–Mn–C–B master alloy (MA) is used as a boron carrier in combination with two iron base powders pre-alloyed with Mo. Through differential scanning calorimetry tests, quantitation of the microstructure with the help of artificial intelligence, as well as measurement of sintered density and strength as a function of sintering temperature, it was possible to unravel the mechanisms that take place before and during LPS. It was confirmed that a cascade of events takes place in the solid state prior to reaching the temperature necessary for a eutectic reaction to form a liquid. Additionally, the pre-alloyed Mo content was identified as a factor that modifies the initiation of LPS but not the LPS mechanisms per se.","PeriodicalId":20392,"journal":{"name":"Powder Metallurgy","volume":"66 1","pages":"29 - 42"},"PeriodicalIF":1.9000,"publicationDate":"2022-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Characterisation of the mechanisms taking place during liquid phase sintering of PM boron steels with the help of artificial intelligence\",\"authors\":\"Simon Gélinas, C. Blais\",\"doi\":\"10.1080/00325899.2022.2055888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Liquid phase sintering (LPS) of powder metallurgy (PM) components is a well-recognised strategy to enhance the densification of pressed-and-sintered compacts. This work reports the investigation on the liquid phase formation when a Fe–Ni–Mn–C–B master alloy (MA) is used as a boron carrier in combination with two iron base powders pre-alloyed with Mo. Through differential scanning calorimetry tests, quantitation of the microstructure with the help of artificial intelligence, as well as measurement of sintered density and strength as a function of sintering temperature, it was possible to unravel the mechanisms that take place before and during LPS. It was confirmed that a cascade of events takes place in the solid state prior to reaching the temperature necessary for a eutectic reaction to form a liquid. Additionally, the pre-alloyed Mo content was identified as a factor that modifies the initiation of LPS but not the LPS mechanisms per se.\",\"PeriodicalId\":20392,\"journal\":{\"name\":\"Powder Metallurgy\",\"volume\":\"66 1\",\"pages\":\"29 - 42\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Powder Metallurgy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/00325899.2022.2055888\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/00325899.2022.2055888","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 1

摘要

粉末冶金(PM)部件的液相烧结(LPS)是一种公认的策略,以提高致密的压制和烧结的压坯。本研究报告了Fe-Ni-Mn-C-B主合金(MA)作为硼载体与两种预先与Mo合金的铁基粉末结合使用时液相形成的研究。通过差示扫描量热法测试,人工智能辅助下的微观结构定量,以及烧结密度和强度作为烧结温度函数的测量,有可能揭示LPS之前和过程中发生的机制。结果证实,在达到共晶反应形成液体所需的温度之前,在固态中发生了一系列事件。此外,预合金Mo含量被确定为改变LPS启动的一个因素,而不是LPS机制本身。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characterisation of the mechanisms taking place during liquid phase sintering of PM boron steels with the help of artificial intelligence
ABSTRACT Liquid phase sintering (LPS) of powder metallurgy (PM) components is a well-recognised strategy to enhance the densification of pressed-and-sintered compacts. This work reports the investigation on the liquid phase formation when a Fe–Ni–Mn–C–B master alloy (MA) is used as a boron carrier in combination with two iron base powders pre-alloyed with Mo. Through differential scanning calorimetry tests, quantitation of the microstructure with the help of artificial intelligence, as well as measurement of sintered density and strength as a function of sintering temperature, it was possible to unravel the mechanisms that take place before and during LPS. It was confirmed that a cascade of events takes place in the solid state prior to reaching the temperature necessary for a eutectic reaction to form a liquid. Additionally, the pre-alloyed Mo content was identified as a factor that modifies the initiation of LPS but not the LPS mechanisms per se.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Powder Metallurgy
Powder Metallurgy 工程技术-冶金工程
CiteScore
2.90
自引率
7.10%
发文量
30
审稿时长
3 months
期刊介绍: Powder Metallurgy is an international journal publishing peer-reviewed original research on the science and practice of powder metallurgy and particulate technology. Coverage includes metallic particulate materials, PM tool materials, hard materials, composites, and novel powder based materials.
期刊最新文献
Can children with negative polysomnography results always be non-OSA controls? Advancement of thermoelectric performances through the dispersion of expanded graphene on p-type BiSbTe alloys Synthesis of Li1.3Al0.3Ti1.7(PO4)3-coated LiCoO2 cathode powder for all-solid-state lithium batteries Development of TiCN-Co-Cr3C2-Si3N4-based cermets with improved hardness and toughness for cutting tool applications Grain refinement and coercivity enhancement of sintered Nd–Fe–B alloys by doping eutectic alloy (Nd0.75Pr0.25)70Cu30.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1