{"title":"包覆生物聚合物的热行为","authors":"Alina Marguță, D. Nedelcu, S. Mazurchevici","doi":"10.54684/ijmmt.2022.14.3.146","DOIUrl":null,"url":null,"abstract":"Thermal behavior in plastic materials has a strong influence on their performance. In the current research, scientists are using different equipment that highlights the calorimetric behavior of parts by the identification and localization of transitions and exothermic/endothermic reactions that take place during material heating. The paper aims to characterize from a thermal point of view a lignin-based polymer (Arboblend V2 Nature) coated with three distinct micro-ceramic powders: two based on chrome oxide - Cr2O3, Cr2O3 -xSiO2 -yTiO2 (commercial name Amdry 6420 and Metco 136F) and one based on zirconium oxide - ZrO2 18TiO2 10Y2O3 (commercially known as Metco 143). The samples to be covered were obtained by injection in the mold and the coating technique used was a thermal – APS (Atmospheric Plasma Spray). After thermal analysis, all three coated samples reviled thermal stability up to 230°C, the degradation of the lignin matrix taking place around 345°C. Thus, based on this important data the recommendation to be used in practical applications can be made. So, the Arbobelnd V2 Nature bio-polymer coated with ceramic micro-particles works in normal working parameters for temperatures not exceeding 200°C. The paper also highlights in the beginning part the systemic analysis of the coating process in order to underline the factors that significantly influence the output parameters as: structure, morphology, mechanical, tribological, and thermal behavior.","PeriodicalId":38009,"journal":{"name":"International Journal of Modern Manufacturing Technologies","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"THERMAL BEHAVIOR OF COATED BIO-POLYMERS\",\"authors\":\"Alina Marguță, D. Nedelcu, S. Mazurchevici\",\"doi\":\"10.54684/ijmmt.2022.14.3.146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermal behavior in plastic materials has a strong influence on their performance. In the current research, scientists are using different equipment that highlights the calorimetric behavior of parts by the identification and localization of transitions and exothermic/endothermic reactions that take place during material heating. The paper aims to characterize from a thermal point of view a lignin-based polymer (Arboblend V2 Nature) coated with three distinct micro-ceramic powders: two based on chrome oxide - Cr2O3, Cr2O3 -xSiO2 -yTiO2 (commercial name Amdry 6420 and Metco 136F) and one based on zirconium oxide - ZrO2 18TiO2 10Y2O3 (commercially known as Metco 143). The samples to be covered were obtained by injection in the mold and the coating technique used was a thermal – APS (Atmospheric Plasma Spray). After thermal analysis, all three coated samples reviled thermal stability up to 230°C, the degradation of the lignin matrix taking place around 345°C. Thus, based on this important data the recommendation to be used in practical applications can be made. So, the Arbobelnd V2 Nature bio-polymer coated with ceramic micro-particles works in normal working parameters for temperatures not exceeding 200°C. The paper also highlights in the beginning part the systemic analysis of the coating process in order to underline the factors that significantly influence the output parameters as: structure, morphology, mechanical, tribological, and thermal behavior.\",\"PeriodicalId\":38009,\"journal\":{\"name\":\"International Journal of Modern Manufacturing Technologies\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Modern Manufacturing Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54684/ijmmt.2022.14.3.146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Manufacturing Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54684/ijmmt.2022.14.3.146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Thermal behavior in plastic materials has a strong influence on their performance. In the current research, scientists are using different equipment that highlights the calorimetric behavior of parts by the identification and localization of transitions and exothermic/endothermic reactions that take place during material heating. The paper aims to characterize from a thermal point of view a lignin-based polymer (Arboblend V2 Nature) coated with three distinct micro-ceramic powders: two based on chrome oxide - Cr2O3, Cr2O3 -xSiO2 -yTiO2 (commercial name Amdry 6420 and Metco 136F) and one based on zirconium oxide - ZrO2 18TiO2 10Y2O3 (commercially known as Metco 143). The samples to be covered were obtained by injection in the mold and the coating technique used was a thermal – APS (Atmospheric Plasma Spray). After thermal analysis, all three coated samples reviled thermal stability up to 230°C, the degradation of the lignin matrix taking place around 345°C. Thus, based on this important data the recommendation to be used in practical applications can be made. So, the Arbobelnd V2 Nature bio-polymer coated with ceramic micro-particles works in normal working parameters for temperatures not exceeding 200°C. The paper also highlights in the beginning part the systemic analysis of the coating process in order to underline the factors that significantly influence the output parameters as: structure, morphology, mechanical, tribological, and thermal behavior.
期刊介绍:
The main topics of the journal are: Micro & Nano Technologies; Rapid Prototyping Technologies; High Speed Manufacturing Processes; Ecological Technologies in Machine Manufacturing; Manufacturing and Automation; Flexible Manufacturing; New Manufacturing Processes; Design, Control and Exploitation; Assembly and Disassembly; Cold Forming Technologies; Optimization of Experimental Research and Manufacturing Processes; Maintenance, Reliability, Life Cycle Time and Cost; CAD/CAM/CAE/CAX Integrated Systems; Composite Materials Technologies; Non-conventional Technologies; Concurrent Engineering; Virtual Manufacturing; Innovation, Creativity and Industrial Development.