{"title":"利用HIPS聚合物提高沥青混凝土混合料抗快速冻融效果","authors":"Mousa I. Bani Baker, R. Abendeh","doi":"10.1680/jemmr.21.00129","DOIUrl":null,"url":null,"abstract":"Two methods of High Impact Polystyrene polymer (HIPS) addition to the asphalt concrete mixtures (AC) were used to evaluate the effect of freeze-thaw (FT) cycles on the performance of unmodified and modified AC by HIPS; supplementary and additional HIPS polymer as asphalt aggregates. Various polymer contents were used to modify the AC in both methods namely 0% (control), 5%, 10%, 15%, and 20%. Marshall stability, flow, bulk density, Indirect Tensile Strength (ITS) tests were performed on control and modified samples. Non-destructive test was evaluated by Ultrasonic Pulse Velocity. In the first method, replacing mineral filler by HIPS polymer in AC by 10% lead to the increase of density by 1%, stability by 113%, retained stability by 52%, and ITS by 56% compared to control specimen, these results show a reduction in the damage caused by 8 weeks of FT cycles by 14% for modified AC compared to unmodified AC. However, modifying AC by the second method did not provide promising results, the velocity within the specimen has dropped by 20.9% at 10% HIPS additive before FT effect compared to control. The results of the first method revealed the feasibility of improving AC by HIPS polymer to resist effective FT cycles.","PeriodicalId":11537,"journal":{"name":"Emerging Materials Research","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Improving asphalt concrete mixtures resistance to rapid freeze-thaw effect using HIPS polymer\",\"authors\":\"Mousa I. Bani Baker, R. Abendeh\",\"doi\":\"10.1680/jemmr.21.00129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two methods of High Impact Polystyrene polymer (HIPS) addition to the asphalt concrete mixtures (AC) were used to evaluate the effect of freeze-thaw (FT) cycles on the performance of unmodified and modified AC by HIPS; supplementary and additional HIPS polymer as asphalt aggregates. Various polymer contents were used to modify the AC in both methods namely 0% (control), 5%, 10%, 15%, and 20%. Marshall stability, flow, bulk density, Indirect Tensile Strength (ITS) tests were performed on control and modified samples. Non-destructive test was evaluated by Ultrasonic Pulse Velocity. In the first method, replacing mineral filler by HIPS polymer in AC by 10% lead to the increase of density by 1%, stability by 113%, retained stability by 52%, and ITS by 56% compared to control specimen, these results show a reduction in the damage caused by 8 weeks of FT cycles by 14% for modified AC compared to unmodified AC. However, modifying AC by the second method did not provide promising results, the velocity within the specimen has dropped by 20.9% at 10% HIPS additive before FT effect compared to control. The results of the first method revealed the feasibility of improving AC by HIPS polymer to resist effective FT cycles.\",\"PeriodicalId\":11537,\"journal\":{\"name\":\"Emerging Materials Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Emerging Materials Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1680/jemmr.21.00129\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Materials Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1680/jemmr.21.00129","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Improving asphalt concrete mixtures resistance to rapid freeze-thaw effect using HIPS polymer
Two methods of High Impact Polystyrene polymer (HIPS) addition to the asphalt concrete mixtures (AC) were used to evaluate the effect of freeze-thaw (FT) cycles on the performance of unmodified and modified AC by HIPS; supplementary and additional HIPS polymer as asphalt aggregates. Various polymer contents were used to modify the AC in both methods namely 0% (control), 5%, 10%, 15%, and 20%. Marshall stability, flow, bulk density, Indirect Tensile Strength (ITS) tests were performed on control and modified samples. Non-destructive test was evaluated by Ultrasonic Pulse Velocity. In the first method, replacing mineral filler by HIPS polymer in AC by 10% lead to the increase of density by 1%, stability by 113%, retained stability by 52%, and ITS by 56% compared to control specimen, these results show a reduction in the damage caused by 8 weeks of FT cycles by 14% for modified AC compared to unmodified AC. However, modifying AC by the second method did not provide promising results, the velocity within the specimen has dropped by 20.9% at 10% HIPS additive before FT effect compared to control. The results of the first method revealed the feasibility of improving AC by HIPS polymer to resist effective FT cycles.
期刊介绍:
Materials Research is constantly evolving and correlations between process, structure, properties and performance which are application specific require expert understanding at the macro-, micro- and nano-scale. The ability to intelligently manipulate material properties and tailor them for desired applications is of constant interest and challenge within universities, national labs and industry.