全球季风系统及其赤道准两年一次涛动的调制

IF 0.7 4区 地球科学 Q4 METEOROLOGY & ATMOSPHERIC SCIENCES MAUSAM Pub Date : 2023-03-29 DOI:10.54302/mausam.v74i2.5948
S. Yoden, Vinay Kumar, S. Dhaka, M. Hitchman
{"title":"全球季风系统及其赤道准两年一次涛动的调制","authors":"S. Yoden, Vinay Kumar, S. Dhaka, M. Hitchman","doi":"10.54302/mausam.v74i2.5948","DOIUrl":null,"url":null,"abstract":"Monthly-mean data of ERA-Interim reanalysis, precipitation, outgoing longwave radiation (OLR) and sea surface temperature(SST) are investigated for 40 years (1979-2018) to reveal the modulation of the global monsoon systems by the equatorial quasi-biennial oscillation (QBO), focusing only on the neutral El Niño-Southern Oscillation (ENSO) periods (in total 374 months). First, the climatology of the global monsoon systems is viewed with longitude-latitude plots of the precipitation, its proxies and lower tropospheric circulations for the annual mean and two solstice seasons, together with the composite differences between the two seasons. In addition to seasonal variations of Intertropical Convergence Zones (ITCZs), several regional monsoon systems are well identified with an anti-phase of the annual cycle between the two hemispheres. Precipitation-related quantities (OLR and specific humidity), surface conditions [i.e., mean sea level pressure (MSLP) and SST] and circulation fields related to moist convection systems show fundamental features of the global monsoon systems. After introducing eight QBO phases based on the leading two principal components of the zonal-mean zonal wind variations in the equatorial lower-stratosphere, the statistical significance of the composite difference in the precipitation and tropospheric circulation is evaluated for the opposite QBO phases. The composite differences show significant modulations in some regional monsoon systems, dominated by zonally asymmetric components, with the largest magnitudes for specific QBO-phases corresponding to traditional indices of the equatorial zonal-mean zonal wind at 20 and 50 hPa. Along the equator, significant QBO influence is characterized by the modulation of the Walker circulation over the western Pacific. In middle latitudes during boreal summer, for a specific QBO-phase, statistically significant modulation of low-pressure cyclonic perturbation is obtained over the Northern-Hemisphere western Pacific Ocean associated with statistically significant features of heavier precipitation over the eastern side of the cyclonic perturbation and the opposite lighter precipitation over the western side. During boreal winter, similar significant low-pressure cyclonic perturbations were found over the Northern-Hemisphere eastern Pacific and Atlantic Oceans for specific phases.","PeriodicalId":18363,"journal":{"name":"MAUSAM","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global monsoon systems and their modulation by the equatorial Quasi-Biennial Oscillation\",\"authors\":\"S. Yoden, Vinay Kumar, S. Dhaka, M. Hitchman\",\"doi\":\"10.54302/mausam.v74i2.5948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monthly-mean data of ERA-Interim reanalysis, precipitation, outgoing longwave radiation (OLR) and sea surface temperature(SST) are investigated for 40 years (1979-2018) to reveal the modulation of the global monsoon systems by the equatorial quasi-biennial oscillation (QBO), focusing only on the neutral El Niño-Southern Oscillation (ENSO) periods (in total 374 months). First, the climatology of the global monsoon systems is viewed with longitude-latitude plots of the precipitation, its proxies and lower tropospheric circulations for the annual mean and two solstice seasons, together with the composite differences between the two seasons. In addition to seasonal variations of Intertropical Convergence Zones (ITCZs), several regional monsoon systems are well identified with an anti-phase of the annual cycle between the two hemispheres. Precipitation-related quantities (OLR and specific humidity), surface conditions [i.e., mean sea level pressure (MSLP) and SST] and circulation fields related to moist convection systems show fundamental features of the global monsoon systems. After introducing eight QBO phases based on the leading two principal components of the zonal-mean zonal wind variations in the equatorial lower-stratosphere, the statistical significance of the composite difference in the precipitation and tropospheric circulation is evaluated for the opposite QBO phases. The composite differences show significant modulations in some regional monsoon systems, dominated by zonally asymmetric components, with the largest magnitudes for specific QBO-phases corresponding to traditional indices of the equatorial zonal-mean zonal wind at 20 and 50 hPa. Along the equator, significant QBO influence is characterized by the modulation of the Walker circulation over the western Pacific. In middle latitudes during boreal summer, for a specific QBO-phase, statistically significant modulation of low-pressure cyclonic perturbation is obtained over the Northern-Hemisphere western Pacific Ocean associated with statistically significant features of heavier precipitation over the eastern side of the cyclonic perturbation and the opposite lighter precipitation over the western side. During boreal winter, similar significant low-pressure cyclonic perturbations were found over the Northern-Hemisphere eastern Pacific and Atlantic Oceans for specific phases.\",\"PeriodicalId\":18363,\"journal\":{\"name\":\"MAUSAM\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MAUSAM\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.54302/mausam.v74i2.5948\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MAUSAM","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.54302/mausam.v74i2.5948","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了40年(1979-2018)的ERA-Interim再分析、降水、外发长波辐射(OLR)和海温(SST)的月平均数据,揭示了赤道准两年一次涛动(QBO)对全球季风系统的调制作用,重点研究了El Niño-Southern中性涛动(ENSO)周期(共374个月)。首先,利用降水量、代用物和对流层低层环流的经纬度图,以及年平均和两个至日季节的综合差值,考察了全球季风系统的气候学。除了热带辐合带(itcz)的季节变化外,几个区域季风系统也被很好地识别为两个半球之间的年周期的反相位。与降水相关的量(OLR和比湿度)、地表条件(即平均海平面压力和海温)以及与湿对流系统相关的环流场显示了全球季风系统的基本特征。基于赤道平流层下纬向风变化的前两个主成分,引入8个QBO相,对相反的QBO相的降水和对流层环流的综合差异进行了统计显著性评价。这些综合差异在某些区域季风系统中显示出显著的调制,以纬向不对称分量为主,与赤道纬向平均风在20和50 hPa的传统指数相对应的特定qbo相的幅度最大。沿赤道,QBO的显著影响表现为西太平洋上空沃克环流的调制。在北半球夏季的中纬度地区,对于一个特定的qbo相位,北半球西太平洋上空的低压气旋扰动在统计上有显著的调制,这与气旋扰动东侧较强降水和相反的西侧较轻降水的统计显著特征有关。在北方冬季,在北半球东太平洋和大西洋的特定阶段发现了类似的显著低压气旋扰动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Global monsoon systems and their modulation by the equatorial Quasi-Biennial Oscillation
Monthly-mean data of ERA-Interim reanalysis, precipitation, outgoing longwave radiation (OLR) and sea surface temperature(SST) are investigated for 40 years (1979-2018) to reveal the modulation of the global monsoon systems by the equatorial quasi-biennial oscillation (QBO), focusing only on the neutral El Niño-Southern Oscillation (ENSO) periods (in total 374 months). First, the climatology of the global monsoon systems is viewed with longitude-latitude plots of the precipitation, its proxies and lower tropospheric circulations for the annual mean and two solstice seasons, together with the composite differences between the two seasons. In addition to seasonal variations of Intertropical Convergence Zones (ITCZs), several regional monsoon systems are well identified with an anti-phase of the annual cycle between the two hemispheres. Precipitation-related quantities (OLR and specific humidity), surface conditions [i.e., mean sea level pressure (MSLP) and SST] and circulation fields related to moist convection systems show fundamental features of the global monsoon systems. After introducing eight QBO phases based on the leading two principal components of the zonal-mean zonal wind variations in the equatorial lower-stratosphere, the statistical significance of the composite difference in the precipitation and tropospheric circulation is evaluated for the opposite QBO phases. The composite differences show significant modulations in some regional monsoon systems, dominated by zonally asymmetric components, with the largest magnitudes for specific QBO-phases corresponding to traditional indices of the equatorial zonal-mean zonal wind at 20 and 50 hPa. Along the equator, significant QBO influence is characterized by the modulation of the Walker circulation over the western Pacific. In middle latitudes during boreal summer, for a specific QBO-phase, statistically significant modulation of low-pressure cyclonic perturbation is obtained over the Northern-Hemisphere western Pacific Ocean associated with statistically significant features of heavier precipitation over the eastern side of the cyclonic perturbation and the opposite lighter precipitation over the western side. During boreal winter, similar significant low-pressure cyclonic perturbations were found over the Northern-Hemisphere eastern Pacific and Atlantic Oceans for specific phases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
MAUSAM
MAUSAM 地学-气象与大气科学
CiteScore
1.20
自引率
0.00%
发文量
1298
审稿时长
6-12 weeks
期刊介绍: MAUSAM (Formerly Indian Journal of Meteorology, Hydrology & Geophysics), established in January 1950, is the quarterly research journal brought out by the India Meteorological Department (IMD). MAUSAM is a medium for publication of original scientific research work. MAUSAM is a premier scientific research journal published in this part of the world in the fields of Meteorology, Hydrology & Geophysics. The four issues appear in January, April, July & October.
期刊最新文献
Precursors of hazard due to super cyclone AMPHAN for Kolkata, India from surface observations Analysis of long-term trends of rainfall and extreme rainfall events over Andaman & Nicobar and Lakshadweep Islands of India Climate drives of growth, yield and microclimate variability in multistoried coconut plantation in Konkan region of Maharashtra, India Accuracy of cumulonimbus cloud prediction using Rapidly Developing Cumulus Area (RDCA) products at Pattimura Ambon airport Markov Chain analysis of rainfall of Coimbatore
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1