高温条件下豌豆的败卵和结实

IF 1 4区 农林科学 Q3 AGRONOMY Canadian Journal of Plant Science Pub Date : 2023-01-25 DOI:10.1139/cjps-2022-0156
Evelyn E. Osorio, A. Davis, T. Warkentin, R. Bueckert
{"title":"高温条件下豌豆的败卵和结实","authors":"Evelyn E. Osorio, A. Davis, T. Warkentin, R. Bueckert","doi":"10.1139/cjps-2022-0156","DOIUrl":null,"url":null,"abstract":"Abstract In pea, high temperatures during reproductive development lead to severe yield loss. Although the ovule is the seed precursor, studies elucidating the effect of heat on this plant structure are scarce. We investigated the impact of heat in the field and growth chamber on ovules 4 days after the open flower (4DOF) stage. Objectives were to identify associations between ovaries and plant performance, and to evaluate seed set and ovule abortion of heat-treated plants for six cultivars from a diverse range of seed-to-ovule ratios. In the field, plants were seeded at early (control, [early seeded pea, ESP]) and late (stress plant [late seeded pea, LSP]) periods in the season. In growth chambers, plants were exposed to heat (35/18 °C) at early flowering for 4 days and then evaluated at maturity. Stressed plants (LSP) displayed twice as many aborted ovules than ESP during early embryo growth (pro-embryo to globular stage) in synchrony with reduced ovaries, ovules, and embryo sac size. Cultivars with reduced ovary size at 4DOF were related to a high number of reproductive nodes and pods in LSP (r = −0.44 to −0.48). Similarly, under growth chamber conditions, heat caused seed reduction by increasing the abortion of immature ovules (early embryonic stages) at various reproductive nodes. Collectively, our results indicated that pea seed loss from heat in the field is largely due to early embryo abortion, a novel finding, rather than disruption of pre-fertilization events. Compensatory effects on plant performance infer plant resource adjustment. Our findings contribute to the assessment and selection of high-yielding pea cultivars for future warming seasons.","PeriodicalId":9530,"journal":{"name":"Canadian Journal of Plant Science","volume":"103 1","pages":"270 - 284"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Ovule abortion and seed set of field pea (Pisum sativum L.) grown under high temperature\",\"authors\":\"Evelyn E. Osorio, A. Davis, T. Warkentin, R. Bueckert\",\"doi\":\"10.1139/cjps-2022-0156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In pea, high temperatures during reproductive development lead to severe yield loss. Although the ovule is the seed precursor, studies elucidating the effect of heat on this plant structure are scarce. We investigated the impact of heat in the field and growth chamber on ovules 4 days after the open flower (4DOF) stage. Objectives were to identify associations between ovaries and plant performance, and to evaluate seed set and ovule abortion of heat-treated plants for six cultivars from a diverse range of seed-to-ovule ratios. In the field, plants were seeded at early (control, [early seeded pea, ESP]) and late (stress plant [late seeded pea, LSP]) periods in the season. In growth chambers, plants were exposed to heat (35/18 °C) at early flowering for 4 days and then evaluated at maturity. Stressed plants (LSP) displayed twice as many aborted ovules than ESP during early embryo growth (pro-embryo to globular stage) in synchrony with reduced ovaries, ovules, and embryo sac size. Cultivars with reduced ovary size at 4DOF were related to a high number of reproductive nodes and pods in LSP (r = −0.44 to −0.48). Similarly, under growth chamber conditions, heat caused seed reduction by increasing the abortion of immature ovules (early embryonic stages) at various reproductive nodes. Collectively, our results indicated that pea seed loss from heat in the field is largely due to early embryo abortion, a novel finding, rather than disruption of pre-fertilization events. Compensatory effects on plant performance infer plant resource adjustment. Our findings contribute to the assessment and selection of high-yielding pea cultivars for future warming seasons.\",\"PeriodicalId\":9530,\"journal\":{\"name\":\"Canadian Journal of Plant Science\",\"volume\":\"103 1\",\"pages\":\"270 - 284\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Plant Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1139/cjps-2022-0156\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/cjps-2022-0156","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 3

摘要

摘要豌豆生殖发育过程中的高温会导致严重的产量损失。尽管胚珠是种子的前体,但阐明热量对这种植物结构影响的研究很少。在开放花期(4DOF)后4天,我们研究了田间和生长室中的热量对胚珠的影响。目的是确定卵巢与植物性能之间的关系,并从不同的种子与胚珠比例中评估六个品种的热处理植物的结实率和胚珠败育。在田间,植物在季节的早期(对照,[早播豌豆,ESP])和晚期(胁迫植物[晚播豌豆,LSP])播种。在生长室中,植物在开花初期暴露在高温(35/18°C)下4天,然后在成熟时进行评估。在早期胚胎生长(前胚至球状阶段),与卵巢、胚珠和胚囊大小减少同步,应激植物(LSP)表现出的败育胚珠数量是ESP的两倍。4DOF时卵巢大小减小的品种与LSP中大量的生殖节和荚有关(r=−0.44至−0.48)。同样,在生长室条件下,热量通过增加不同生殖节处未成熟胚珠(胚胎早期)的败育而导致种子减少。总之,我们的研究结果表明,豌豆种子在田间因高温而损失主要是由于早期胚胎流产,这是一项新发现,而不是受精前事件的破坏。对工厂性能的补偿效应推断工厂资源调整。我们的发现有助于评估和选择未来变暖季节的高产豌豆品种。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ovule abortion and seed set of field pea (Pisum sativum L.) grown under high temperature
Abstract In pea, high temperatures during reproductive development lead to severe yield loss. Although the ovule is the seed precursor, studies elucidating the effect of heat on this plant structure are scarce. We investigated the impact of heat in the field and growth chamber on ovules 4 days after the open flower (4DOF) stage. Objectives were to identify associations between ovaries and plant performance, and to evaluate seed set and ovule abortion of heat-treated plants for six cultivars from a diverse range of seed-to-ovule ratios. In the field, plants were seeded at early (control, [early seeded pea, ESP]) and late (stress plant [late seeded pea, LSP]) periods in the season. In growth chambers, plants were exposed to heat (35/18 °C) at early flowering for 4 days and then evaluated at maturity. Stressed plants (LSP) displayed twice as many aborted ovules than ESP during early embryo growth (pro-embryo to globular stage) in synchrony with reduced ovaries, ovules, and embryo sac size. Cultivars with reduced ovary size at 4DOF were related to a high number of reproductive nodes and pods in LSP (r = −0.44 to −0.48). Similarly, under growth chamber conditions, heat caused seed reduction by increasing the abortion of immature ovules (early embryonic stages) at various reproductive nodes. Collectively, our results indicated that pea seed loss from heat in the field is largely due to early embryo abortion, a novel finding, rather than disruption of pre-fertilization events. Compensatory effects on plant performance infer plant resource adjustment. Our findings contribute to the assessment and selection of high-yielding pea cultivars for future warming seasons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
8.30%
发文量
91
审稿时长
1 months
期刊介绍: Published since 1957, the Canadian Journal of Plant Science is a bimonthly journal that contains new research on all aspects of plant science relevant to continental climate agriculture, including plant production and management (grain, forage, industrial, and alternative crops), horticulture (fruit, vegetable, ornamental, greenhouse, and alternative crops), and pest management (entomology, plant pathology, and weed science). Cross-disciplinary research in the application of technology, plant breeding, genetics, physiology, biotechnology, microbiology, soil management, economics, meteorology, post-harvest biology, and plant production systems is also published. Research that makes a significant contribution to the advancement of knowledge of crop, horticulture, and weed sciences (e.g., drought or stress resistance), but not directly applicable to the environmental regions of Canadian agriculture, may also be considered. The Journal also publishes reviews, letters to the editor, the abstracts of technical papers presented at the meetings of the sponsoring societies, and occasionally conference proceedings.
期刊最新文献
An intellectual gap in root research on major crops of the Canadian Prairies Seeding rate and sulfur drive field pea yields in the Maritime region of Canada Alfalfa (Medicago sativa L.) quality is improved from tractor traffic implemented during harvest Evaluation of sequential mesotrione application rates and sequential tolpyralate and mesotrione applications for narrow-leaved goldenrod management in lowbush blueberry The potato vine crusher: a new tool for harvest weed seed control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1