Patrick D. Allen, Mark Alan Matties, Elisha Peterson
{"title":"毛球终结者:查看和比较图形的图形分类方法","authors":"Patrick D. Allen, Mark Alan Matties, Elisha Peterson","doi":"10.21307/CONNECTIONS-2019.009","DOIUrl":null,"url":null,"abstract":"Abstract Hairball buster (HB) (also called node-neighbor centrality or NNC) is an approach to graph analytic triage that uses simple calculations and visualization to quickly understand and compare graphs. Rather than displaying highly interconnected graphs as ‘hairballs’ that are difficult to understand, HB provides a simple standard visual representation of a graph and its metrics, combining a monotonically decreasing curve of node metrics with indicators of each node’s neighbors’ metrics. The HB visual is canonical, in the sense that it provides a standard output for each node-link graph. It helps analysts quickly identify areas for further investigation, and also allows for easy comparison between graphs of different data sets. The calculations required for creating an HB display is order M plus N log N, where N is the number of nodes and M is the number of edges. This paper includes examples of the HB approach applied to four real-world data sets. It also compares HB to similar visual approaches such as degree histograms, adjacency matrices, blockmodeling, and force-based layout techniques. HB presents greater information density than other algorithms at lower or equal calculation cost, efficiently presenting information in a single display that is not available in any other single display.","PeriodicalId":88856,"journal":{"name":"Connections (Toronto, Ont.)","volume":"40 1","pages":"1 - 24"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hairball Buster: A Graph Triage Method for Viewing and Comparing Graphs\",\"authors\":\"Patrick D. Allen, Mark Alan Matties, Elisha Peterson\",\"doi\":\"10.21307/CONNECTIONS-2019.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Hairball buster (HB) (also called node-neighbor centrality or NNC) is an approach to graph analytic triage that uses simple calculations and visualization to quickly understand and compare graphs. Rather than displaying highly interconnected graphs as ‘hairballs’ that are difficult to understand, HB provides a simple standard visual representation of a graph and its metrics, combining a monotonically decreasing curve of node metrics with indicators of each node’s neighbors’ metrics. The HB visual is canonical, in the sense that it provides a standard output for each node-link graph. It helps analysts quickly identify areas for further investigation, and also allows for easy comparison between graphs of different data sets. The calculations required for creating an HB display is order M plus N log N, where N is the number of nodes and M is the number of edges. This paper includes examples of the HB approach applied to four real-world data sets. It also compares HB to similar visual approaches such as degree histograms, adjacency matrices, blockmodeling, and force-based layout techniques. HB presents greater information density than other algorithms at lower or equal calculation cost, efficiently presenting information in a single display that is not available in any other single display.\",\"PeriodicalId\":88856,\"journal\":{\"name\":\"Connections (Toronto, Ont.)\",\"volume\":\"40 1\",\"pages\":\"1 - 24\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Connections (Toronto, Ont.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21307/CONNECTIONS-2019.009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Connections (Toronto, Ont.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21307/CONNECTIONS-2019.009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
Hairball buster (HB)(也称为节点邻居中心性或NNC)是一种图形分析分类方法,它使用简单的计算和可视化来快速理解和比较图形。HB没有将高度互连的图形显示为难以理解的“毛球”,而是提供了图形及其指标的简单标准可视化表示,将节点指标的单调递减曲线与每个节点邻居指标的指标相结合。HB可视化是规范的,因为它为每个节点链接图提供了标准输出。它可以帮助分析人员快速确定需要进一步调查的领域,还可以方便地比较不同数据集的图形。创建HB显示所需的计算是o (M + N log N),其中N是节点的数量,M是边的数量。本文包括HB方法应用于四个真实世界数据集的例子。它还将HB与类似的视觉方法进行了比较,如度直方图、邻接矩阵、块建模和基于力的布局技术。与其他算法相比,HB以更低或相同的计算成本提供了更大的信息密度,有效地在单个显示器中显示任何其他单个显示器无法提供的信息。
Hairball Buster: A Graph Triage Method for Viewing and Comparing Graphs
Abstract Hairball buster (HB) (also called node-neighbor centrality or NNC) is an approach to graph analytic triage that uses simple calculations and visualization to quickly understand and compare graphs. Rather than displaying highly interconnected graphs as ‘hairballs’ that are difficult to understand, HB provides a simple standard visual representation of a graph and its metrics, combining a monotonically decreasing curve of node metrics with indicators of each node’s neighbors’ metrics. The HB visual is canonical, in the sense that it provides a standard output for each node-link graph. It helps analysts quickly identify areas for further investigation, and also allows for easy comparison between graphs of different data sets. The calculations required for creating an HB display is order M plus N log N, where N is the number of nodes and M is the number of edges. This paper includes examples of the HB approach applied to four real-world data sets. It also compares HB to similar visual approaches such as degree histograms, adjacency matrices, blockmodeling, and force-based layout techniques. HB presents greater information density than other algorithms at lower or equal calculation cost, efficiently presenting information in a single display that is not available in any other single display.