{"title":"复杂形状遥控水下航行器的运动模型","authors":"T. Nguyen, Horák, Thu Tran, Quang Hoang","doi":"10.3849/AIMT.01403","DOIUrl":null,"url":null,"abstract":"The knowledge of velocities of a remotely operated underwater vehicle (ROV) is crucial for the study of the ROV motion. The ROV motion equations are complemented by hydrodynamic parameters and forces acting upon the ROV. The matrices of hydrodynamic damping coefficients and external forces acting upon the ROV are considered in this study as well. The computational results obtained by the Runge-Kutta method are compared with the experiment. It appears that the presented model can be useful for the design and investigation of remotely operated underwater vehicles.","PeriodicalId":39125,"journal":{"name":"Advances in Military Technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Motion Model of a Complex-Shaped Remotely Operated Underwater Vehicle\",\"authors\":\"T. Nguyen, Horák, Thu Tran, Quang Hoang\",\"doi\":\"10.3849/AIMT.01403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The knowledge of velocities of a remotely operated underwater vehicle (ROV) is crucial for the study of the ROV motion. The ROV motion equations are complemented by hydrodynamic parameters and forces acting upon the ROV. The matrices of hydrodynamic damping coefficients and external forces acting upon the ROV are considered in this study as well. The computational results obtained by the Runge-Kutta method are compared with the experiment. It appears that the presented model can be useful for the design and investigation of remotely operated underwater vehicles.\",\"PeriodicalId\":39125,\"journal\":{\"name\":\"Advances in Military Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Military Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3849/AIMT.01403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Military Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3849/AIMT.01403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
A Motion Model of a Complex-Shaped Remotely Operated Underwater Vehicle
The knowledge of velocities of a remotely operated underwater vehicle (ROV) is crucial for the study of the ROV motion. The ROV motion equations are complemented by hydrodynamic parameters and forces acting upon the ROV. The matrices of hydrodynamic damping coefficients and external forces acting upon the ROV are considered in this study as well. The computational results obtained by the Runge-Kutta method are compared with the experiment. It appears that the presented model can be useful for the design and investigation of remotely operated underwater vehicles.