复杂形状遥控水下航行器的运动模型

Q4 Engineering Advances in Military Technology Pub Date : 2020-12-30 DOI:10.3849/AIMT.01403
T. Nguyen, Horák, Thu Tran, Quang Hoang
{"title":"复杂形状遥控水下航行器的运动模型","authors":"T. Nguyen, Horák, Thu Tran, Quang Hoang","doi":"10.3849/AIMT.01403","DOIUrl":null,"url":null,"abstract":"The knowledge of velocities of a remotely operated underwater vehicle (ROV) is crucial for the study of the ROV motion. The ROV motion equations are complemented by hydrodynamic parameters and forces acting upon the ROV. The matrices of hydrodynamic damping coefficients and external forces acting upon the ROV are considered in this study as well. The computational results obtained by the Runge-Kutta method are compared with the experiment. It appears that the presented model can be useful for the design and investigation of remotely operated underwater vehicles.","PeriodicalId":39125,"journal":{"name":"Advances in Military Technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Motion Model of a Complex-Shaped Remotely Operated Underwater Vehicle\",\"authors\":\"T. Nguyen, Horák, Thu Tran, Quang Hoang\",\"doi\":\"10.3849/AIMT.01403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The knowledge of velocities of a remotely operated underwater vehicle (ROV) is crucial for the study of the ROV motion. The ROV motion equations are complemented by hydrodynamic parameters and forces acting upon the ROV. The matrices of hydrodynamic damping coefficients and external forces acting upon the ROV are considered in this study as well. The computational results obtained by the Runge-Kutta method are compared with the experiment. It appears that the presented model can be useful for the design and investigation of remotely operated underwater vehicles.\",\"PeriodicalId\":39125,\"journal\":{\"name\":\"Advances in Military Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Military Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3849/AIMT.01403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Military Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3849/AIMT.01403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 3

摘要

了解遥控水下航行器(ROV)的速度是研究ROV运动的关键。ROV运动方程由水动力参数和作用在ROV上的力补充。本文还考虑了ROV的水动力阻尼系数矩阵和作用在ROV上的外力矩阵。将龙格-库塔法计算结果与实验结果进行了比较。该模型可用于遥控水下航行器的设计和研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Motion Model of a Complex-Shaped Remotely Operated Underwater Vehicle
The knowledge of velocities of a remotely operated underwater vehicle (ROV) is crucial for the study of the ROV motion. The ROV motion equations are complemented by hydrodynamic parameters and forces acting upon the ROV. The matrices of hydrodynamic damping coefficients and external forces acting upon the ROV are considered in this study as well. The computational results obtained by the Runge-Kutta method are compared with the experiment. It appears that the presented model can be useful for the design and investigation of remotely operated underwater vehicles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Military Technology
Advances in Military Technology Engineering-Civil and Structural Engineering
CiteScore
0.90
自引率
0.00%
发文量
11
审稿时长
12 weeks
期刊最新文献
Use of a Handheld Raman Spectrometer for Identification of Toxic Agents in Clandestine Laboratories Evaluating the Effectiveness of Assets Protection by Air Defense Means from Cruise Missiles Strikes Detection of Malicious Network Activity by Artificial Neural Network Estimation of Maximum Signal Strength for Satellite Tracking Based on the Extended Kalman Filter Rating of the mobility of Military Logistic Vehicles Used in the Polish Armed Forces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1