Camil Wadih Salame, J. Queiroz, Everaldo Barreiros de Souza, V. J. C. Farias, Edson José Paulino da Rocha, Helyelson Paredes Moura
{"title":"BOX-JENKINS模型与人工神经网络在巴西托坎廷斯阿拉瓜巴西利亚径流和降水预防中的比较研究","authors":"Camil Wadih Salame, J. Queiroz, Everaldo Barreiros de Souza, V. J. C. Farias, Edson José Paulino da Rocha, Helyelson Paredes Moura","doi":"10.5327//z2176-947820190444","DOIUrl":null,"url":null,"abstract":"Estudar a variabilidade dos parâmetros hidroclimáticos locais em baciashidrográficas é importante para melhorar o gerenciamento dos recursos hídricos.Para tal, foram utilizados o modelo estatístico baseado na metodologia Box-Jenkins, adotado por muitas empresas na análise de séries temporais, inclusivetodo o setor elétrico brasileiro, e a tecnologia de redes neurais, que se apresentacomo poderosa ferramenta para previsões. Na comparação entre as duas técnicas,foram utilizadas observações de médias mensais de duas estações meteorológicasda Bacia Araguaia-Tocantins, Brasil, uma de vazões mensais (m3/s) e outra deprecipitações pluviométricas mensais (mm), da Agência Nacional de Águas (ANA),com registros contínuos nos períodos de 1969 a 2017 e 1974 a 2017. As previsõesforam testadas para 12 e 24 meses. Uma comparação entre os dois métodos,usando o teste de hipótese a partir de intervalos de confiança de 95%, mostrouque não houve diferenças estatisticamente significativas nas previsões individuaistanto de precipitações pluviométricas como de vazões. Entretanto, o uso do rootmean square error (RMSE) mostrou que o método de Box-Jenkins apresentamelhores resultados. A maior dificuldade nesse método é na construção domodelo, sobretudo em séries com alta variabilidade. O método de redes neurais,em geral, consome mais tempo computacional em relação ao Box-Jenkins.","PeriodicalId":33560,"journal":{"name":"Revista Brasileira de Ciencias Ambientais","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"UM ESTUDO COMPARATIVO DOS MODELOS BOX-JENKINS E REDES NEURAIS ARTIFICIAIS NA PREVISÃO DE VAZÕES E PRECIPITAÇÕES PLUVIOMÉTRICAS DA BACIA ARAGUAIA, TOCANTINS, BRASIL\",\"authors\":\"Camil Wadih Salame, J. Queiroz, Everaldo Barreiros de Souza, V. J. C. Farias, Edson José Paulino da Rocha, Helyelson Paredes Moura\",\"doi\":\"10.5327//z2176-947820190444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estudar a variabilidade dos parâmetros hidroclimáticos locais em baciashidrográficas é importante para melhorar o gerenciamento dos recursos hídricos.Para tal, foram utilizados o modelo estatístico baseado na metodologia Box-Jenkins, adotado por muitas empresas na análise de séries temporais, inclusivetodo o setor elétrico brasileiro, e a tecnologia de redes neurais, que se apresentacomo poderosa ferramenta para previsões. Na comparação entre as duas técnicas,foram utilizadas observações de médias mensais de duas estações meteorológicasda Bacia Araguaia-Tocantins, Brasil, uma de vazões mensais (m3/s) e outra deprecipitações pluviométricas mensais (mm), da Agência Nacional de Águas (ANA),com registros contínuos nos períodos de 1969 a 2017 e 1974 a 2017. As previsõesforam testadas para 12 e 24 meses. Uma comparação entre os dois métodos,usando o teste de hipótese a partir de intervalos de confiança de 95%, mostrouque não houve diferenças estatisticamente significativas nas previsões individuaistanto de precipitações pluviométricas como de vazões. Entretanto, o uso do rootmean square error (RMSE) mostrou que o método de Box-Jenkins apresentamelhores resultados. A maior dificuldade nesse método é na construção domodelo, sobretudo em séries com alta variabilidade. O método de redes neurais,em geral, consome mais tempo computacional em relação ao Box-Jenkins.\",\"PeriodicalId\":33560,\"journal\":{\"name\":\"Revista Brasileira de Ciencias Ambientais\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Brasileira de Ciencias Ambientais\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5327//z2176-947820190444\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira de Ciencias Ambientais","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5327//z2176-947820190444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
UM ESTUDO COMPARATIVO DOS MODELOS BOX-JENKINS E REDES NEURAIS ARTIFICIAIS NA PREVISÃO DE VAZÕES E PRECIPITAÇÕES PLUVIOMÉTRICAS DA BACIA ARAGUAIA, TOCANTINS, BRASIL
Estudar a variabilidade dos parâmetros hidroclimáticos locais em baciashidrográficas é importante para melhorar o gerenciamento dos recursos hídricos.Para tal, foram utilizados o modelo estatístico baseado na metodologia Box-Jenkins, adotado por muitas empresas na análise de séries temporais, inclusivetodo o setor elétrico brasileiro, e a tecnologia de redes neurais, que se apresentacomo poderosa ferramenta para previsões. Na comparação entre as duas técnicas,foram utilizadas observações de médias mensais de duas estações meteorológicasda Bacia Araguaia-Tocantins, Brasil, uma de vazões mensais (m3/s) e outra deprecipitações pluviométricas mensais (mm), da Agência Nacional de Águas (ANA),com registros contínuos nos períodos de 1969 a 2017 e 1974 a 2017. As previsõesforam testadas para 12 e 24 meses. Uma comparação entre os dois métodos,usando o teste de hipótese a partir de intervalos de confiança de 95%, mostrouque não houve diferenças estatisticamente significativas nas previsões individuaistanto de precipitações pluviométricas como de vazões. Entretanto, o uso do rootmean square error (RMSE) mostrou que o método de Box-Jenkins apresentamelhores resultados. A maior dificuldade nesse método é na construção domodelo, sobretudo em séries com alta variabilidade. O método de redes neurais,em geral, consome mais tempo computacional em relação ao Box-Jenkins.