Niklas Bauer, Andris Rambaks, Corinna Müller, H. Murrenhoff, K. Schmitz
{"title":"在平动密封EHL模拟中实现Jakobsson-Floberg-Olsson空化模型的策略","authors":"Niklas Bauer, Andris Rambaks, Corinna Müller, H. Murrenhoff, K. Schmitz","doi":"10.13052/IJFP1439-9776.2223","DOIUrl":null,"url":null,"abstract":"The numerically stable simulation of cavitation effects is mandatory for predicting the friction and wear behavior of translational hydraulic seals. This contribution provides a comparison of two different implementations of the Jakobsson-Floberg-Olsson (JFO) cavitation model, an investigation of their properties and possible options for their stabilization. These methods are tested and compared both within a simple divergent gap test case as well as within an EHL simulation of a rubber metal contact. Based on these comparisons and theoretical investigations, the strengths and weaknesses of the different methods are summarized and discussed with respect to an application in EHL simulations of translational hydraulic seals.","PeriodicalId":13977,"journal":{"name":"International Journal of Fluid Power","volume":"1 1","pages":"199–232-199–232"},"PeriodicalIF":0.7000,"publicationDate":"2021-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Strategies for Implementing the Jakobsson-Floberg-Olsson Cavitation Model in EHL Simulations of Translational Seals\",\"authors\":\"Niklas Bauer, Andris Rambaks, Corinna Müller, H. Murrenhoff, K. Schmitz\",\"doi\":\"10.13052/IJFP1439-9776.2223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The numerically stable simulation of cavitation effects is mandatory for predicting the friction and wear behavior of translational hydraulic seals. This contribution provides a comparison of two different implementations of the Jakobsson-Floberg-Olsson (JFO) cavitation model, an investigation of their properties and possible options for their stabilization. These methods are tested and compared both within a simple divergent gap test case as well as within an EHL simulation of a rubber metal contact. Based on these comparisons and theoretical investigations, the strengths and weaknesses of the different methods are summarized and discussed with respect to an application in EHL simulations of translational hydraulic seals.\",\"PeriodicalId\":13977,\"journal\":{\"name\":\"International Journal of Fluid Power\",\"volume\":\"1 1\",\"pages\":\"199–232-199–232\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fluid Power\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/IJFP1439-9776.2223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fluid Power","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/IJFP1439-9776.2223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Strategies for Implementing the Jakobsson-Floberg-Olsson Cavitation Model in EHL Simulations of Translational Seals
The numerically stable simulation of cavitation effects is mandatory for predicting the friction and wear behavior of translational hydraulic seals. This contribution provides a comparison of two different implementations of the Jakobsson-Floberg-Olsson (JFO) cavitation model, an investigation of their properties and possible options for their stabilization. These methods are tested and compared both within a simple divergent gap test case as well as within an EHL simulation of a rubber metal contact. Based on these comparisons and theoretical investigations, the strengths and weaknesses of the different methods are summarized and discussed with respect to an application in EHL simulations of translational hydraulic seals.