NO2统计建模中空间与非空间方法的比较:预测精度、不确定性量化和模型解释

IF 3.3 3区 地球科学 Q1 GEOGRAPHY Geographical Analysis Pub Date : 2023-01-17 DOI:10.1111/gean.12356
Meng Lu, Joaquin Cavieres, Paula Moraga
{"title":"NO2统计建模中空间与非空间方法的比较:预测精度、不确定性量化和模型解释","authors":"Meng Lu,&nbsp;Joaquin Cavieres,&nbsp;Paula Moraga","doi":"10.1111/gean.12356","DOIUrl":null,"url":null,"abstract":"<p><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>NO</mtext>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{NO}}_2 $$</annotation>\n </semantics></math> is a traffic-related air pollutant. Ground <math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>NO</mtext>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{NO}}_2 $$</annotation>\n </semantics></math> monitoring stations measure <math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>NO</mtext>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{NO}}_2 $$</annotation>\n </semantics></math> concentrations at certain locations and statistical predictive methods have been developed to predict <math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>NO</mtext>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{NO}}_2 $$</annotation>\n </semantics></math> as a continuous surface. Among them, ensemble tree-based methods have shown to be powerful in capturing nonlinear relationships between <math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>NO</mtext>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{NO}}_2 $$</annotation>\n </semantics></math> measurements and geospatial predictors but it is unclear if the spatial structure of <math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>NO</mtext>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{NO}}_2 $$</annotation>\n </semantics></math> is also captured in the response-covariates relationships. We dive into the comparison between spatial and nonspatial data models accounting for prediction accuracy, model interpretation and uncertainty quantification. Moreover, we implement two new spatial and a nonspatial methods that have not been applied to air pollution mapping. We implemented our study using national ground station measurements of <math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>NO</mtext>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{NO}}_2 $$</annotation>\n </semantics></math> in Germany and the Netherlands of 2017. Our results indicate heterogeneous levels of importance of modeling the spatial process in different areas. The prediction intervals predicted with ensemble tree-based methods are more satisfactory than the geostatistical methods. The two new methods implemented each obtained better prediction accuracy compared to the original ensemble tree-based and stacking methods. The probabilistic distribution of the spatial random field estimated by the geostatistical methods could provide useful information for analyzing emission sources and the spatial process of observations.</p>","PeriodicalId":12533,"journal":{"name":"Geographical Analysis","volume":"55 4","pages":"703-727"},"PeriodicalIF":3.3000,"publicationDate":"2023-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gean.12356","citationCount":"2","resultStr":"{\"title\":\"A Comparison of Spatial and Nonspatial Methods in Statistical Modeling of \\n \\n \\n \\n \\n NO\\n \\n \\n 2\\n \\n \\n \\n : Prediction Accuracy, Uncertainty Quantification, and Model Interpretation\",\"authors\":\"Meng Lu,&nbsp;Joaquin Cavieres,&nbsp;Paula Moraga\",\"doi\":\"10.1111/gean.12356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mtext>NO</mtext>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{NO}}_2 $$</annotation>\\n </semantics></math> is a traffic-related air pollutant. Ground <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mtext>NO</mtext>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{NO}}_2 $$</annotation>\\n </semantics></math> monitoring stations measure <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mtext>NO</mtext>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{NO}}_2 $$</annotation>\\n </semantics></math> concentrations at certain locations and statistical predictive methods have been developed to predict <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mtext>NO</mtext>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{NO}}_2 $$</annotation>\\n </semantics></math> as a continuous surface. Among them, ensemble tree-based methods have shown to be powerful in capturing nonlinear relationships between <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mtext>NO</mtext>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{NO}}_2 $$</annotation>\\n </semantics></math> measurements and geospatial predictors but it is unclear if the spatial structure of <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mtext>NO</mtext>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{NO}}_2 $$</annotation>\\n </semantics></math> is also captured in the response-covariates relationships. We dive into the comparison between spatial and nonspatial data models accounting for prediction accuracy, model interpretation and uncertainty quantification. Moreover, we implement two new spatial and a nonspatial methods that have not been applied to air pollution mapping. We implemented our study using national ground station measurements of <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mtext>NO</mtext>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{NO}}_2 $$</annotation>\\n </semantics></math> in Germany and the Netherlands of 2017. Our results indicate heterogeneous levels of importance of modeling the spatial process in different areas. The prediction intervals predicted with ensemble tree-based methods are more satisfactory than the geostatistical methods. The two new methods implemented each obtained better prediction accuracy compared to the original ensemble tree-based and stacking methods. The probabilistic distribution of the spatial random field estimated by the geostatistical methods could provide useful information for analyzing emission sources and the spatial process of observations.</p>\",\"PeriodicalId\":12533,\"journal\":{\"name\":\"Geographical Analysis\",\"volume\":\"55 4\",\"pages\":\"703-727\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gean.12356\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geographical Analysis\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gean.12356\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geographical Analysis","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gean.12356","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY","Score":null,"Total":0}
引用次数: 2

摘要

NO 2 $$ {\mathrm{NO}}_2 $$是一种与交通有关的空气污染物。地面NO 2 $$ {\mathrm{NO}}_2 $$监测站测量NO2 $$ {\mathrm{NO}}_2 $$在某些地点的浓度和统计预测方法已经发展到预测no2$$ {\mathrm{NO}}_2 $$作为一个连续的表面。其中,基于集成树的方法在捕获二氧化氮$$ {\mathrm{NO}}_2 $$测量值与地理空间预测因子之间的非线性关系方面显示出强大的能力,但目前尚不清楚二氧化氮的空间结构no2 $$ {\mathrm{NO}}_2 $$也在响应-协变量关系中被捕获。我们深入研究了空间和非空间数据模型在预测精度、模型解释和不确定性量化方面的比较。此外,我们实现了两种新的空间和非空间方法,这些方法尚未应用于空气污染制图。2017年,我们在德国和荷兰使用国家地面站测量二氧化氮$$ {\mathrm{NO}}_2 $$来实施我们的研究。我们的研究结果表明,在不同的地区,空间过程建模的重要性程度不同。与地质统计方法相比,基于集合树的预测区间更令人满意。与基于集成树和叠加的原始方法相比,实现的两种新方法均获得了更好的预测精度。利用地统计方法估计的空间随机场的概率分布可以为分析发射源和观测的空间过程提供有用的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Comparison of Spatial and Nonspatial Methods in Statistical Modeling of NO 2 : Prediction Accuracy, Uncertainty Quantification, and Model Interpretation

NO 2 $$ {\mathrm{NO}}_2 $$ is a traffic-related air pollutant. Ground NO 2 $$ {\mathrm{NO}}_2 $$ monitoring stations measure NO 2 $$ {\mathrm{NO}}_2 $$ concentrations at certain locations and statistical predictive methods have been developed to predict NO 2 $$ {\mathrm{NO}}_2 $$ as a continuous surface. Among them, ensemble tree-based methods have shown to be powerful in capturing nonlinear relationships between NO 2 $$ {\mathrm{NO}}_2 $$ measurements and geospatial predictors but it is unclear if the spatial structure of NO 2 $$ {\mathrm{NO}}_2 $$ is also captured in the response-covariates relationships. We dive into the comparison between spatial and nonspatial data models accounting for prediction accuracy, model interpretation and uncertainty quantification. Moreover, we implement two new spatial and a nonspatial methods that have not been applied to air pollution mapping. We implemented our study using national ground station measurements of NO 2 $$ {\mathrm{NO}}_2 $$ in Germany and the Netherlands of 2017. Our results indicate heterogeneous levels of importance of modeling the spatial process in different areas. The prediction intervals predicted with ensemble tree-based methods are more satisfactory than the geostatistical methods. The two new methods implemented each obtained better prediction accuracy compared to the original ensemble tree-based and stacking methods. The probabilistic distribution of the spatial random field estimated by the geostatistical methods could provide useful information for analyzing emission sources and the spatial process of observations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.70
自引率
5.60%
发文量
40
期刊介绍: First in its specialty area and one of the most frequently cited publications in geography, Geographical Analysis has, since 1969, presented significant advances in geographical theory, model building, and quantitative methods to geographers and scholars in a wide spectrum of related fields. Traditionally, mathematical and nonmathematical articulations of geographical theory, and statements and discussions of the analytic paradigm are published in the journal. Spatial data analyses and spatial econometrics and statistics are strongly represented.
期刊最新文献
Issue Information Impacts of improved transport on regional market access Testing Hypotheses When You Have More Than a Few* Beyond Auto‐Models: Self‐Correlated Sui‐Model Respecifications Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1