离心纺丝创新高效制备高性能聚丙烯腈基碳纤维纸

IF 2.2 4区 工程技术 Q1 MATERIALS SCIENCE, TEXTILES Journal of Industrial Textiles Pub Date : 2023-01-01 DOI:10.1177/15280837221149214
Zhiyu Wu, S. Qin, Yuemei Liu, Jun Hu, Xing Li, Bowen Zhang, Chunhua Zhang, Ke Zhang, Jiuxiao Sun, Heng Pan, Xin Liu
{"title":"离心纺丝创新高效制备高性能聚丙烯腈基碳纤维纸","authors":"Zhiyu Wu, S. Qin, Yuemei Liu, Jun Hu, Xing Li, Bowen Zhang, Chunhua Zhang, Ke Zhang, Jiuxiao Sun, Heng Pan, Xin Liu","doi":"10.1177/15280837221149214","DOIUrl":null,"url":null,"abstract":"Polyacrylonitrile (PAN) carbon fibers are often used to prepare high-performance paper-based materials owing to their high strength, good electrical and thermal conductivity, and superior comprehensive properties. In this study, a novel method for preparing PAN-based carbon fibers by centrifugal spinning was developed, and a stable and homogeneous PAN carbon fiber paper was successfully obtained. Subsequently, the formation process, microscopic morphology, electrical conductivity, electrochemical performance and hydrophobicity of the PAN carbon fiber paper were studied and evaluated. The results showed that the electrical conductivity of the PAN carbon fiber paper prepared via this method reached 43.250 s·cm−1, resistivity was as low as 0.023–0.033 Ω·cm, and contact angle exceeded 140°. This study adopted a new method to prepare PAN carbon fiber paper, which provided another method for the preparation of high-performance fiber paper.","PeriodicalId":16097,"journal":{"name":"Journal of Industrial Textiles","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Innovative and efficient preparation of high-performance polyacrylonitrile-based carbon fiber paper by centrifugal spinning\",\"authors\":\"Zhiyu Wu, S. Qin, Yuemei Liu, Jun Hu, Xing Li, Bowen Zhang, Chunhua Zhang, Ke Zhang, Jiuxiao Sun, Heng Pan, Xin Liu\",\"doi\":\"10.1177/15280837221149214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polyacrylonitrile (PAN) carbon fibers are often used to prepare high-performance paper-based materials owing to their high strength, good electrical and thermal conductivity, and superior comprehensive properties. In this study, a novel method for preparing PAN-based carbon fibers by centrifugal spinning was developed, and a stable and homogeneous PAN carbon fiber paper was successfully obtained. Subsequently, the formation process, microscopic morphology, electrical conductivity, electrochemical performance and hydrophobicity of the PAN carbon fiber paper were studied and evaluated. The results showed that the electrical conductivity of the PAN carbon fiber paper prepared via this method reached 43.250 s·cm−1, resistivity was as low as 0.023–0.033 Ω·cm, and contact angle exceeded 140°. This study adopted a new method to prepare PAN carbon fiber paper, which provided another method for the preparation of high-performance fiber paper.\",\"PeriodicalId\":16097,\"journal\":{\"name\":\"Journal of Industrial Textiles\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial Textiles\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/15280837221149214\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, TEXTILES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Textiles","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/15280837221149214","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0

摘要

聚丙烯腈(PAN)碳纤维由于其高强度、良好的导电性和导热性以及优异的综合性能,经常被用于制备高性能的纸基材料。本研究开发了一种离心纺丝制备PAN基碳纤维的新方法,并成功地获得了稳定、均匀的PAN碳纤维纸。随后,对PAN碳纤维纸的形成过程、微观形貌、导电性、电化学性能和疏水性进行了研究和评价。结果表明,用该方法制备的PAN碳纤维纸的电导率达到43.250 s·cm−1,电阻率低至0.023–0.033Ω·cm,接触角超过140°。本研究采用一种新的方法制备PAN碳纤维纸,为制备高性能纤维纸提供了另一种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Innovative and efficient preparation of high-performance polyacrylonitrile-based carbon fiber paper by centrifugal spinning
Polyacrylonitrile (PAN) carbon fibers are often used to prepare high-performance paper-based materials owing to their high strength, good electrical and thermal conductivity, and superior comprehensive properties. In this study, a novel method for preparing PAN-based carbon fibers by centrifugal spinning was developed, and a stable and homogeneous PAN carbon fiber paper was successfully obtained. Subsequently, the formation process, microscopic morphology, electrical conductivity, electrochemical performance and hydrophobicity of the PAN carbon fiber paper were studied and evaluated. The results showed that the electrical conductivity of the PAN carbon fiber paper prepared via this method reached 43.250 s·cm−1, resistivity was as low as 0.023–0.033 Ω·cm, and contact angle exceeded 140°. This study adopted a new method to prepare PAN carbon fiber paper, which provided another method for the preparation of high-performance fiber paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Industrial Textiles
Journal of Industrial Textiles MATERIALS SCIENCE, TEXTILES-
CiteScore
5.30
自引率
18.80%
发文量
165
审稿时长
2.3 months
期刊介绍: The Journal of Industrial Textiles is the only peer reviewed journal devoted exclusively to technology, processing, methodology, modelling and applications in technical textiles, nonwovens, coated and laminated fabrics, textile composites and nanofibers.
期刊最新文献
Influence of honeycomb structures on fluids transmission and heat retention properties; An initiative towards stretchable weaves Experimental study on protective performance of ACF sandwich composites with different configurations in high-velocity impact Comprehensive study of the off-axis mechanical behaviors of a Polytetrafluoroethylene‐ coated fabric after 23 Years of service at Shanghai stadium Transformation of zinc acetate into ZnO nanofibers for enhanced NOx gas sensing: Cost-effective strategies and additive-free optimization Multifunctional sandwich materials with ROTIS structure for improved thermal and electrical properties in construction application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1