Esteban Díaz, Edgar Leonardo Salamanca-Medina, Roberto Tomás
{"title":"喷射灌浆抗压强度的机器学习评估","authors":"Esteban Díaz, Edgar Leonardo Salamanca-Medina, Roberto Tomás","doi":"10.1016/j.jrmge.2023.03.008","DOIUrl":null,"url":null,"abstract":"<div><p>Jet grouting is one of the most popular soil improvement techniques, but its design usually involves great uncertainties that can lead to economic cost overruns in construction projects. The high dispersion in the properties of the improved material leads to designers assuming a conservative, arbitrary and unjustified strength, which is even sometimes subjected to the results of the test fields. The present paper presents an approach for prediction of the uniaxial compressive strength (UCS) of jet grouting columns based on the analysis of several machine learning algorithms on a database of 854 results mainly collected from different research papers. The selected machine learning model (extremely randomized trees) relates the soil type and various parameters of the technique to the value of the compressive strength. Despite the complex mechanism that surrounds the jet grouting process, evidenced by the high dispersion and low correlation of the variables studied, the trained model allows to optimally predict the values of compressive strength with a significant improvement with respect to the existing works. Consequently, this work proposes for the first time a reliable and easily applicable approach for estimation of the compressive strength of jet grouting columns.</p></div>","PeriodicalId":54219,"journal":{"name":"Journal of Rock Mechanics and Geotechnical Engineering","volume":"16 1","pages":"Pages 102-111"},"PeriodicalIF":9.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674775523001002/pdfft?md5=8c191fa59443c03d527e6e9a4af798c8&pid=1-s2.0-S1674775523001002-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Assessment of compressive strength of jet grouting by machine learning\",\"authors\":\"Esteban Díaz, Edgar Leonardo Salamanca-Medina, Roberto Tomás\",\"doi\":\"10.1016/j.jrmge.2023.03.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Jet grouting is one of the most popular soil improvement techniques, but its design usually involves great uncertainties that can lead to economic cost overruns in construction projects. The high dispersion in the properties of the improved material leads to designers assuming a conservative, arbitrary and unjustified strength, which is even sometimes subjected to the results of the test fields. The present paper presents an approach for prediction of the uniaxial compressive strength (UCS) of jet grouting columns based on the analysis of several machine learning algorithms on a database of 854 results mainly collected from different research papers. The selected machine learning model (extremely randomized trees) relates the soil type and various parameters of the technique to the value of the compressive strength. Despite the complex mechanism that surrounds the jet grouting process, evidenced by the high dispersion and low correlation of the variables studied, the trained model allows to optimally predict the values of compressive strength with a significant improvement with respect to the existing works. Consequently, this work proposes for the first time a reliable and easily applicable approach for estimation of the compressive strength of jet grouting columns.</p></div>\",\"PeriodicalId\":54219,\"journal\":{\"name\":\"Journal of Rock Mechanics and Geotechnical Engineering\",\"volume\":\"16 1\",\"pages\":\"Pages 102-111\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1674775523001002/pdfft?md5=8c191fa59443c03d527e6e9a4af798c8&pid=1-s2.0-S1674775523001002-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Rock Mechanics and Geotechnical Engineering\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674775523001002\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rock Mechanics and Geotechnical Engineering","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674775523001002","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Assessment of compressive strength of jet grouting by machine learning
Jet grouting is one of the most popular soil improvement techniques, but its design usually involves great uncertainties that can lead to economic cost overruns in construction projects. The high dispersion in the properties of the improved material leads to designers assuming a conservative, arbitrary and unjustified strength, which is even sometimes subjected to the results of the test fields. The present paper presents an approach for prediction of the uniaxial compressive strength (UCS) of jet grouting columns based on the analysis of several machine learning algorithms on a database of 854 results mainly collected from different research papers. The selected machine learning model (extremely randomized trees) relates the soil type and various parameters of the technique to the value of the compressive strength. Despite the complex mechanism that surrounds the jet grouting process, evidenced by the high dispersion and low correlation of the variables studied, the trained model allows to optimally predict the values of compressive strength with a significant improvement with respect to the existing works. Consequently, this work proposes for the first time a reliable and easily applicable approach for estimation of the compressive strength of jet grouting columns.
期刊介绍:
The Journal of Rock Mechanics and Geotechnical Engineering (JRMGE), overseen by the Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, is dedicated to the latest advancements in rock mechanics and geotechnical engineering. It serves as a platform for global scholars to stay updated on developments in various related fields including soil mechanics, foundation engineering, civil engineering, mining engineering, hydraulic engineering, petroleum engineering, and engineering geology. With a focus on fostering international academic exchange, JRMGE acts as a conduit between theoretical advancements and practical applications. Topics covered include new theories, technologies, methods, experiences, in-situ and laboratory tests, developments, case studies, and timely reviews within the realm of rock mechanics and geotechnical engineering.