Saleh Lashkari, A. Moghimi, H. Kobravi, M. A. Younessi Heravi
{"title":"基于动物脑电活动相空间形态特征的新型尖峰波放电检测框架","authors":"Saleh Lashkari, A. Moghimi, H. Kobravi, M. A. Younessi Heravi","doi":"10.34172/icnj.2021.36","DOIUrl":null,"url":null,"abstract":"Background: Animal models of absence epilepsy are widely used in childhood absence epilepsy studies. Absence seizures appear in the brain’s electrical activity as a specific spike wave discharge (SWD) pattern. Reviewing long-term brain electrical activity is time-consuming and automatic methods are necessary. On the other hand, nonlinear techniques such as phase space are effective in brain electrical activity analysis. In this study, we present a novel SWD-detection framework based on the geometrical characteristics of the phase space. Methods: The method consists of the following steps: (1) Rat stereotaxic surgery and cortical electrode implantation, (2) Long-term brain electrical activity recording, (3) Phase space reconstruction, (4) Extracting geometrical features such as volume, occupied space, and curvature of brain signal trajectories, and (5) Detecting SDWs based on the thresholding method. We evaluated the approach with the accuracy of the SWDs detection method. Results: It has been demonstrated that the features change significantly in transition from a normal state to epileptic seizures. The proposed approach detected SWDs with 98% accuracy. Conclusion: The result supports that nonlinear approaches can identify the dynamics of brain electrical activity signals.","PeriodicalId":33222,"journal":{"name":"International Clinical Neuroscience Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Spike-Wave Discharge Detection Framework Based on the Morphological Characteristics of Brain Electrical Activity Phase Space in an Animal Model\",\"authors\":\"Saleh Lashkari, A. Moghimi, H. Kobravi, M. A. Younessi Heravi\",\"doi\":\"10.34172/icnj.2021.36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Animal models of absence epilepsy are widely used in childhood absence epilepsy studies. Absence seizures appear in the brain’s electrical activity as a specific spike wave discharge (SWD) pattern. Reviewing long-term brain electrical activity is time-consuming and automatic methods are necessary. On the other hand, nonlinear techniques such as phase space are effective in brain electrical activity analysis. In this study, we present a novel SWD-detection framework based on the geometrical characteristics of the phase space. Methods: The method consists of the following steps: (1) Rat stereotaxic surgery and cortical electrode implantation, (2) Long-term brain electrical activity recording, (3) Phase space reconstruction, (4) Extracting geometrical features such as volume, occupied space, and curvature of brain signal trajectories, and (5) Detecting SDWs based on the thresholding method. We evaluated the approach with the accuracy of the SWDs detection method. Results: It has been demonstrated that the features change significantly in transition from a normal state to epileptic seizures. The proposed approach detected SWDs with 98% accuracy. Conclusion: The result supports that nonlinear approaches can identify the dynamics of brain electrical activity signals.\",\"PeriodicalId\":33222,\"journal\":{\"name\":\"International Clinical Neuroscience Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Clinical Neuroscience Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34172/icnj.2021.36\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Clinical Neuroscience Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34172/icnj.2021.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Novel Spike-Wave Discharge Detection Framework Based on the Morphological Characteristics of Brain Electrical Activity Phase Space in an Animal Model
Background: Animal models of absence epilepsy are widely used in childhood absence epilepsy studies. Absence seizures appear in the brain’s electrical activity as a specific spike wave discharge (SWD) pattern. Reviewing long-term brain electrical activity is time-consuming and automatic methods are necessary. On the other hand, nonlinear techniques such as phase space are effective in brain electrical activity analysis. In this study, we present a novel SWD-detection framework based on the geometrical characteristics of the phase space. Methods: The method consists of the following steps: (1) Rat stereotaxic surgery and cortical electrode implantation, (2) Long-term brain electrical activity recording, (3) Phase space reconstruction, (4) Extracting geometrical features such as volume, occupied space, and curvature of brain signal trajectories, and (5) Detecting SDWs based on the thresholding method. We evaluated the approach with the accuracy of the SWDs detection method. Results: It has been demonstrated that the features change significantly in transition from a normal state to epileptic seizures. The proposed approach detected SWDs with 98% accuracy. Conclusion: The result supports that nonlinear approaches can identify the dynamics of brain electrical activity signals.