{"title":"结合概率和非概率样本的预测估计","authors":"Chenyin Gao, Shu Yang","doi":"10.1214/23-ejs2137","DOIUrl":null,"url":null,"abstract":"Multiple heterogeneous data sources are becoming increasingly available for statistical analyses in the era of big data. As an important example in finite-population inference, we develop a unified framework of the test-and-pool approach to general parameter estimation by combining gold-standard probability and non-probability samples. We focus on the case when the study variable is observed in both datasets for estimating the target parameters, and each contains other auxiliary variables. Utilizing the probability design, we conduct a pretest procedure to determine the comparability of the non-probability data with the probability data and decide whether or not to leverage the non-probability data in a pooled analysis. When the probability and non-probability data are comparable, our approach combines both data for efficient estimation. Otherwise, we retain only the probability data for estimation. We also characterize the asymptotic distribution of the proposed test-and-pool estimator under a local alternative and provide a data-adaptive procedure to select the critical tuning parameters that target the smallest mean square error of the test-and-pool estimator. Lastly, to deal with the non-regularity of the test-and-pool estimator, we construct a robust confidence interval that has a good finite-sample coverage property.","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Pretest estimation in combining probability and non-probability samples\",\"authors\":\"Chenyin Gao, Shu Yang\",\"doi\":\"10.1214/23-ejs2137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiple heterogeneous data sources are becoming increasingly available for statistical analyses in the era of big data. As an important example in finite-population inference, we develop a unified framework of the test-and-pool approach to general parameter estimation by combining gold-standard probability and non-probability samples. We focus on the case when the study variable is observed in both datasets for estimating the target parameters, and each contains other auxiliary variables. Utilizing the probability design, we conduct a pretest procedure to determine the comparability of the non-probability data with the probability data and decide whether or not to leverage the non-probability data in a pooled analysis. When the probability and non-probability data are comparable, our approach combines both data for efficient estimation. Otherwise, we retain only the probability data for estimation. We also characterize the asymptotic distribution of the proposed test-and-pool estimator under a local alternative and provide a data-adaptive procedure to select the critical tuning parameters that target the smallest mean square error of the test-and-pool estimator. Lastly, to deal with the non-regularity of the test-and-pool estimator, we construct a robust confidence interval that has a good finite-sample coverage property.\",\"PeriodicalId\":49272,\"journal\":{\"name\":\"Electronic Journal of Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/23-ejs2137\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-ejs2137","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Pretest estimation in combining probability and non-probability samples
Multiple heterogeneous data sources are becoming increasingly available for statistical analyses in the era of big data. As an important example in finite-population inference, we develop a unified framework of the test-and-pool approach to general parameter estimation by combining gold-standard probability and non-probability samples. We focus on the case when the study variable is observed in both datasets for estimating the target parameters, and each contains other auxiliary variables. Utilizing the probability design, we conduct a pretest procedure to determine the comparability of the non-probability data with the probability data and decide whether or not to leverage the non-probability data in a pooled analysis. When the probability and non-probability data are comparable, our approach combines both data for efficient estimation. Otherwise, we retain only the probability data for estimation. We also characterize the asymptotic distribution of the proposed test-and-pool estimator under a local alternative and provide a data-adaptive procedure to select the critical tuning parameters that target the smallest mean square error of the test-and-pool estimator. Lastly, to deal with the non-regularity of the test-and-pool estimator, we construct a robust confidence interval that has a good finite-sample coverage property.
期刊介绍:
The Electronic Journal of Statistics (EJS) publishes research articles and short notes on theoretical, computational and applied statistics. The journal is open access. Articles are refereed and are held to the same standard as articles in other IMS journals. Articles become publicly available shortly after they are accepted.