单电子电路和超导量子比特的热力学

IF 14.3 1区 物理与天体物理 Q1 PHYSICS, CONDENSED MATTER Annual Review of Condensed Matter Physics Pub Date : 2018-12-15 DOI:10.1146/annurev-conmatphys-033117-054120
J. Pekola, Ivan M Khaymovich
{"title":"单电子电路和超导量子比特的热力学","authors":"J. Pekola, Ivan M Khaymovich","doi":"10.1146/annurev-conmatphys-033117-054120","DOIUrl":null,"url":null,"abstract":"Classical and quantum electronic circuits provide ideal platforms to investigate stochastic thermodynamics, and they have served as a stepping stone to realize Maxwell's Demons with highly controllable protocols. In this article, we first review the central thermal phenomena in quantum nanostructures. Thermometry and basic refrigeration methods are described as enabling tools for thermodynamics experiments. Next, we discuss the role of information in thermodynamics that leads to the concept of Maxwell's Demon. Various Maxwell's Demons realized in single-electron circuits over the past couple of years are described. Currently, true quantum thermodynamics in superconducting circuits is a focus of attention, and we end the review by discussing the ideas and first experiments in this exciting area of research.","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":null,"pages":null},"PeriodicalIF":14.3000,"publicationDate":"2018-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-conmatphys-033117-054120","citationCount":"37","resultStr":"{\"title\":\"Thermodynamics in Single-Electron Circuits and Superconducting Qubits\",\"authors\":\"J. Pekola, Ivan M Khaymovich\",\"doi\":\"10.1146/annurev-conmatphys-033117-054120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classical and quantum electronic circuits provide ideal platforms to investigate stochastic thermodynamics, and they have served as a stepping stone to realize Maxwell's Demons with highly controllable protocols. In this article, we first review the central thermal phenomena in quantum nanostructures. Thermometry and basic refrigeration methods are described as enabling tools for thermodynamics experiments. Next, we discuss the role of information in thermodynamics that leads to the concept of Maxwell's Demon. Various Maxwell's Demons realized in single-electron circuits over the past couple of years are described. Currently, true quantum thermodynamics in superconducting circuits is a focus of attention, and we end the review by discussing the ideas and first experiments in this exciting area of research.\",\"PeriodicalId\":7925,\"journal\":{\"name\":\"Annual Review of Condensed Matter Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2018-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1146/annurev-conmatphys-033117-054120\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Condensed Matter Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-conmatphys-033117-054120\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1146/annurev-conmatphys-033117-054120","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 37

摘要

经典和量子电子电路为研究随机热力学提供了理想的平台,它们是用高度可控的协议实现麦克斯韦演示的垫脚石。在这篇文章中,我们首先回顾了量子纳米结构中的中心热现象。温度计和基本的制冷方法被描述为热力学实验的工具。接下来,我们讨论信息在热力学中的作用,这导致了麦克斯韦恶魔的概念。描述了过去几年在单电子电路中实现的各种麦克斯韦演示。目前,超导电路中的真量子热力学是一个关注的焦点,我们在结束这篇综述时讨论了这一令人兴奋的研究领域的想法和首次实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermodynamics in Single-Electron Circuits and Superconducting Qubits
Classical and quantum electronic circuits provide ideal platforms to investigate stochastic thermodynamics, and they have served as a stepping stone to realize Maxwell's Demons with highly controllable protocols. In this article, we first review the central thermal phenomena in quantum nanostructures. Thermometry and basic refrigeration methods are described as enabling tools for thermodynamics experiments. Next, we discuss the role of information in thermodynamics that leads to the concept of Maxwell's Demon. Various Maxwell's Demons realized in single-electron circuits over the past couple of years are described. Currently, true quantum thermodynamics in superconducting circuits is a focus of attention, and we end the review by discussing the ideas and first experiments in this exciting area of research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual Review of Condensed Matter Physics
Annual Review of Condensed Matter Physics PHYSICS, CONDENSED MATTER-
CiteScore
47.40
自引率
0.90%
发文量
27
期刊介绍: Since its inception in 2010, the Annual Review of Condensed Matter Physics has been chronicling significant advancements in the field and its related subjects. By highlighting recent developments and offering critical evaluations, the journal actively contributes to the ongoing discourse in condensed matter physics. The latest volume of the journal has transitioned from gated access to open access, facilitated by Annual Reviews' Subscribe to Open initiative. Under this program, all articles are now published under a CC BY license, ensuring broader accessibility and dissemination of knowledge.
期刊最新文献
Quantum Liquids: Emergent Higher-Rank Gauge Theory and Fractons Self-Assembly and Transport Phenomena of Colloids: Confinement and Geometrical Effects Human Rights and Science: Biographical Notes Hydrodynamic Electronic Transport Evolution from Bardeen–Cooper–Schrieffer to Bose–Einstein Condensation in Two Dimensions: Crossovers and Topological Quantum Phase Transitions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1