{"title":"基于ANFIS的超深亚微米数字电路设计热估计","authors":"Ruby Beniwal, Shruti Kalra","doi":"10.29292/jics.v16i3.507","DOIUrl":null,"url":null,"abstract":"In this paper, the use of the Adaptive Neuro Fuzzy Inference System (ANFIS) to model the CMOS inverter is discussed as a tool for developing and simulating CMOS logic circuits at the ultradeep submicron technology node of 22nm. The ANFIS structures are built and trained using MATLAB software. The ANFIS network was trained using data obtained from the analytical model (at 298.15K and 398.15K). For training, two methodologies are used: a hybrid learning method based on back-propagation and least-squares estimation, and back-propagation. The effect of the ANFIS model's structure on the accuracy and performance of the CMOS inverter has also been investigated. Further, simulation through HSPICE using (Predictive Technology Model) PTM nominal parameters has been done to compare with ANFIS (trained using an analytical model) results. The comparison of ANFIS and HSPICE suggests the ANFIS modelling procedure's practicality and correctness. The findings demonstrate that the ANFIS simulation is significantly faster and more comparable than the HSPICE simulation and that it can be easily integrated into software tools for designing and simulating complicated CMOS logic circuits.","PeriodicalId":39974,"journal":{"name":"Journal of Integrated Circuits and Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ANFIS Based Thermal Estimation of Ultradeep Submicron Digital Circuit Design\",\"authors\":\"Ruby Beniwal, Shruti Kalra\",\"doi\":\"10.29292/jics.v16i3.507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the use of the Adaptive Neuro Fuzzy Inference System (ANFIS) to model the CMOS inverter is discussed as a tool for developing and simulating CMOS logic circuits at the ultradeep submicron technology node of 22nm. The ANFIS structures are built and trained using MATLAB software. The ANFIS network was trained using data obtained from the analytical model (at 298.15K and 398.15K). For training, two methodologies are used: a hybrid learning method based on back-propagation and least-squares estimation, and back-propagation. The effect of the ANFIS model's structure on the accuracy and performance of the CMOS inverter has also been investigated. Further, simulation through HSPICE using (Predictive Technology Model) PTM nominal parameters has been done to compare with ANFIS (trained using an analytical model) results. The comparison of ANFIS and HSPICE suggests the ANFIS modelling procedure's practicality and correctness. The findings demonstrate that the ANFIS simulation is significantly faster and more comparable than the HSPICE simulation and that it can be easily integrated into software tools for designing and simulating complicated CMOS logic circuits.\",\"PeriodicalId\":39974,\"journal\":{\"name\":\"Journal of Integrated Circuits and Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integrated Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29292/jics.v16i3.507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrated Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29292/jics.v16i3.507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
ANFIS Based Thermal Estimation of Ultradeep Submicron Digital Circuit Design
In this paper, the use of the Adaptive Neuro Fuzzy Inference System (ANFIS) to model the CMOS inverter is discussed as a tool for developing and simulating CMOS logic circuits at the ultradeep submicron technology node of 22nm. The ANFIS structures are built and trained using MATLAB software. The ANFIS network was trained using data obtained from the analytical model (at 298.15K and 398.15K). For training, two methodologies are used: a hybrid learning method based on back-propagation and least-squares estimation, and back-propagation. The effect of the ANFIS model's structure on the accuracy and performance of the CMOS inverter has also been investigated. Further, simulation through HSPICE using (Predictive Technology Model) PTM nominal parameters has been done to compare with ANFIS (trained using an analytical model) results. The comparison of ANFIS and HSPICE suggests the ANFIS modelling procedure's practicality and correctness. The findings demonstrate that the ANFIS simulation is significantly faster and more comparable than the HSPICE simulation and that it can be easily integrated into software tools for designing and simulating complicated CMOS logic circuits.
期刊介绍:
This journal will present state-of-art papers on Integrated Circuits and Systems. It is an effort of both Brazilian Microelectronics Society - SBMicro and Brazilian Computer Society - SBC to create a new scientific journal covering Process and Materials, Device and Characterization, Design, Test and CAD of Integrated Circuits and Systems. The Journal of Integrated Circuits and Systems is published through Special Issues on subjects to be defined by the Editorial Board. Special issues will publish selected papers from both Brazilian Societies annual conferences, SBCCI - Symposium on Integrated Circuits and Systems and SBMicro - Symposium on Microelectronics Technology and Devices.