基于ANFIS的超深亚微米数字电路设计热估计

Ruby Beniwal, Shruti Kalra
{"title":"基于ANFIS的超深亚微米数字电路设计热估计","authors":"Ruby Beniwal, Shruti Kalra","doi":"10.29292/jics.v16i3.507","DOIUrl":null,"url":null,"abstract":"In this paper, the use of the Adaptive Neuro Fuzzy Inference System (ANFIS) to model the CMOS inverter is discussed as a tool for developing and simulating CMOS logic circuits at the ultradeep submicron technology node of 22nm. The ANFIS structures are built and trained using MATLAB software. The ANFIS network was trained using data obtained from the analytical model (at 298.15K and 398.15K). For training, two methodologies are used: a hybrid learning method based on back-propagation and least-squares estimation, and back-propagation. The effect of the ANFIS model's structure on the accuracy and performance of the CMOS inverter has also been investigated. Further, simulation through HSPICE using (Predictive Technology Model) PTM nominal parameters has been done to compare with ANFIS (trained using an analytical model) results. The comparison of ANFIS and HSPICE suggests the ANFIS modelling procedure's practicality and correctness. The findings demonstrate that the ANFIS simulation is significantly faster and more comparable than the HSPICE simulation and that it can be easily integrated into software tools for designing and simulating complicated CMOS logic circuits.","PeriodicalId":39974,"journal":{"name":"Journal of Integrated Circuits and Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ANFIS Based Thermal Estimation of Ultradeep Submicron Digital Circuit Design\",\"authors\":\"Ruby Beniwal, Shruti Kalra\",\"doi\":\"10.29292/jics.v16i3.507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the use of the Adaptive Neuro Fuzzy Inference System (ANFIS) to model the CMOS inverter is discussed as a tool for developing and simulating CMOS logic circuits at the ultradeep submicron technology node of 22nm. The ANFIS structures are built and trained using MATLAB software. The ANFIS network was trained using data obtained from the analytical model (at 298.15K and 398.15K). For training, two methodologies are used: a hybrid learning method based on back-propagation and least-squares estimation, and back-propagation. The effect of the ANFIS model's structure on the accuracy and performance of the CMOS inverter has also been investigated. Further, simulation through HSPICE using (Predictive Technology Model) PTM nominal parameters has been done to compare with ANFIS (trained using an analytical model) results. The comparison of ANFIS and HSPICE suggests the ANFIS modelling procedure's practicality and correctness. The findings demonstrate that the ANFIS simulation is significantly faster and more comparable than the HSPICE simulation and that it can be easily integrated into software tools for designing and simulating complicated CMOS logic circuits.\",\"PeriodicalId\":39974,\"journal\":{\"name\":\"Journal of Integrated Circuits and Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integrated Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29292/jics.v16i3.507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrated Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29292/jics.v16i3.507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了使用自适应神经模糊推理系统(ANFIS)对CMOS反相器进行建模,作为在22nm超深亚微米技术节点上开发和模拟CMOS逻辑电路的工具。使用MATLAB软件建立并训练ANFIS结构。ANFIS网络使用从分析模型中获得的数据(298.15K和398.15K)进行训练。对于训练,使用了两种方法:基于反向传播和最小二乘估计的混合学习方法和反向传播。研究了ANFIS模型的结构对CMOS反相器精度和性能的影响。此外,已经使用(预测技术模型)PTM标称参数通过HSPICE进行了仿真,以与ANFIS(使用分析模型训练)结果进行比较。ANFIS和HSPICE的比较表明ANFIS建模过程的实用性和正确性。研究结果表明,ANFIS仿真比HSPICE仿真更快、更具可比性,并且可以很容易地集成到用于设计和模拟复杂CMOS逻辑电路的软件工具中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ANFIS Based Thermal Estimation of Ultradeep Submicron Digital Circuit Design
In this paper, the use of the Adaptive Neuro Fuzzy Inference System (ANFIS) to model the CMOS inverter is discussed as a tool for developing and simulating CMOS logic circuits at the ultradeep submicron technology node of 22nm. The ANFIS structures are built and trained using MATLAB software. The ANFIS network was trained using data obtained from the analytical model (at 298.15K and 398.15K). For training, two methodologies are used: a hybrid learning method based on back-propagation and least-squares estimation, and back-propagation. The effect of the ANFIS model's structure on the accuracy and performance of the CMOS inverter has also been investigated. Further, simulation through HSPICE using (Predictive Technology Model) PTM nominal parameters has been done to compare with ANFIS (trained using an analytical model) results. The comparison of ANFIS and HSPICE suggests the ANFIS modelling procedure's practicality and correctness. The findings demonstrate that the ANFIS simulation is significantly faster and more comparable than the HSPICE simulation and that it can be easily integrated into software tools for designing and simulating complicated CMOS logic circuits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Integrated Circuits and Systems
Journal of Integrated Circuits and Systems Engineering-Electrical and Electronic Engineering
CiteScore
0.90
自引率
0.00%
发文量
39
期刊介绍: This journal will present state-of-art papers on Integrated Circuits and Systems. It is an effort of both Brazilian Microelectronics Society - SBMicro and Brazilian Computer Society - SBC to create a new scientific journal covering Process and Materials, Device and Characterization, Design, Test and CAD of Integrated Circuits and Systems. The Journal of Integrated Circuits and Systems is published through Special Issues on subjects to be defined by the Editorial Board. Special issues will publish selected papers from both Brazilian Societies annual conferences, SBCCI - Symposium on Integrated Circuits and Systems and SBMicro - Symposium on Microelectronics Technology and Devices.
期刊最新文献
Analysis of biosensing performance of Trench Double Gate Junctionless Field Effect Transistor Alternative approach to design Dibit-based XOR and XNOR gate A Low Power R-peak Detector Clocked at Signal Sampling Rate Impact of the gate work function on the experimental I-V characteristics of MOS solar cells simulated with the Sentaurus TCAD software Design and Performance Assessment of a Label- free Biosensor utilizing a Novel TFET Configuration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1