利用气象资料预测综合水汽的机器学习技术评估

IF 2.4 Q2 GEOSCIENCES, MULTIDISCIPLINARY VIETNAM JOURNAL OF EARTH SCIENCES Pub Date : 2022-07-29 DOI:10.15625/2615-9783/17373
Nirmala Bai Jadala, M. Sridhar, D. Venkata Ratnam, G. Dutta
{"title":"利用气象资料预测综合水汽的机器学习技术评估","authors":"Nirmala Bai Jadala, M. Sridhar, D. Venkata Ratnam, G. Dutta","doi":"10.15625/2615-9783/17373","DOIUrl":null,"url":null,"abstract":"Weather and Climatological studies are very important in assessing atmospheric conditions like storms and cyclones. Integrated water vapor (IWV) is an important greenhouse gas in the atmosphere responsible for the Earth's radiative balance. Global Positioning System (GPS) observations have been used for monitoring the IWV variability.  The IWV estimations are carried out using ground-based GPS observations at Hyderabad (17.4°N, 78.46°E), India using GAMIT software. GAMIT is GPS analysis software developed by MIT, USA. It takes input as GPS observation data containing pseudo ranges, navigation data containing ephemeris, clock errors, g-files with orbital information, and meteorological data like pressure, temperature, and relative humidity to calculate IWV. However, estimating IWV for forecasting applications is impossible with a GPS system. This paper introduces a methodology to predict IWV during normal days and severe cyclonic events using machine learning (ML) techniques. Rational quadratic Gaussian process regression (RQ-GPR) and neural network (NN) algorithms are considered for identifying suitable ML prediction algorithms over tropical conditions. Meteorological surface data like Pressure, Temperature, and relative humidity are given as input to the machine learning models. The IWV values computed from GPS are compared with the model's predicted values. RQ-GPR model is showing good accuracy with the IWV values computed from GPS against the NN model. The correlation coefficient (ρ) achieved for RQ-GPR is 0.93, and 0.86 is obtained for the NN model. \nThe RMSE (Root Mean Square Error) of the predicted IWV value with RQ-GPR is better than the NN model. We have obtained mean square error (MSE) and mean absolute error (MAE) as 18.146 kg/m2 and 3.0762 kg/m2 for RQ-GPR and 27.509 kg/m2 and 3.9102 kg/m2 for the NN model which is showing RQ-GPR is a suitable model for forecasting applications. The HUDHUD cyclonic event that occurred in October 2014 is considered for testing the proposed ML algorithms. RQ-GPR model has better results in the Prediction of IWV than the NN model. The RMSE value obtained is 2.837 kg/m2 for RQ-GPR and 3.327 kg/m2 obtained from the NN model. The results indicate that the RQ-GPR model has more accuracy than the other IWV prediction models. The prediction results are helpful for meteorology, weather, and climatology studies and useful to improve the accuracy of the regional numerical weather prediction models.","PeriodicalId":23639,"journal":{"name":"VIETNAM JOURNAL OF EARTH SCIENCES","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2022-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Assessment of machine learning techniques for prediction of integrated water vapor using meteorological data\",\"authors\":\"Nirmala Bai Jadala, M. Sridhar, D. Venkata Ratnam, G. Dutta\",\"doi\":\"10.15625/2615-9783/17373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Weather and Climatological studies are very important in assessing atmospheric conditions like storms and cyclones. Integrated water vapor (IWV) is an important greenhouse gas in the atmosphere responsible for the Earth's radiative balance. Global Positioning System (GPS) observations have been used for monitoring the IWV variability.  The IWV estimations are carried out using ground-based GPS observations at Hyderabad (17.4°N, 78.46°E), India using GAMIT software. GAMIT is GPS analysis software developed by MIT, USA. It takes input as GPS observation data containing pseudo ranges, navigation data containing ephemeris, clock errors, g-files with orbital information, and meteorological data like pressure, temperature, and relative humidity to calculate IWV. However, estimating IWV for forecasting applications is impossible with a GPS system. This paper introduces a methodology to predict IWV during normal days and severe cyclonic events using machine learning (ML) techniques. Rational quadratic Gaussian process regression (RQ-GPR) and neural network (NN) algorithms are considered for identifying suitable ML prediction algorithms over tropical conditions. Meteorological surface data like Pressure, Temperature, and relative humidity are given as input to the machine learning models. The IWV values computed from GPS are compared with the model's predicted values. RQ-GPR model is showing good accuracy with the IWV values computed from GPS against the NN model. The correlation coefficient (ρ) achieved for RQ-GPR is 0.93, and 0.86 is obtained for the NN model. \\nThe RMSE (Root Mean Square Error) of the predicted IWV value with RQ-GPR is better than the NN model. We have obtained mean square error (MSE) and mean absolute error (MAE) as 18.146 kg/m2 and 3.0762 kg/m2 for RQ-GPR and 27.509 kg/m2 and 3.9102 kg/m2 for the NN model which is showing RQ-GPR is a suitable model for forecasting applications. The HUDHUD cyclonic event that occurred in October 2014 is considered for testing the proposed ML algorithms. RQ-GPR model has better results in the Prediction of IWV than the NN model. The RMSE value obtained is 2.837 kg/m2 for RQ-GPR and 3.327 kg/m2 obtained from the NN model. The results indicate that the RQ-GPR model has more accuracy than the other IWV prediction models. The prediction results are helpful for meteorology, weather, and climatology studies and useful to improve the accuracy of the regional numerical weather prediction models.\",\"PeriodicalId\":23639,\"journal\":{\"name\":\"VIETNAM JOURNAL OF EARTH SCIENCES\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2022-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VIETNAM JOURNAL OF EARTH SCIENCES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15625/2615-9783/17373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VIETNAM JOURNAL OF EARTH SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15625/2615-9783/17373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

天气和气候学研究对于评估风暴和气旋等大气条件非常重要。综合水蒸气(IWV)是大气中重要的温室气体,负责地球的辐射平衡。全球定位系统(GPS)观测已被用于监测IWV的变化。利用GAMIT软件,利用印度海得拉巴(17.4°N, 78.46°E)的地面GPS观测资料进行IWV估算。GAMIT是美国麻省理工学院开发的GPS分析软件。输入包含伪距离的GPS观测数据、包含星历、时钟误差的导航数据、包含轨道信息的g文件以及气压、温度、相对湿度等气象数据来计算IWV。然而,用GPS系统估计预报应用的IWV是不可能的。本文介绍了一种利用机器学习(ML)技术预测正常天气和严重气旋事件期间IWV的方法。考虑了有理二次高斯过程回归(RQ-GPR)和神经网络(NN)算法来确定热带条件下合适的ML预测算法。气压、温度和相对湿度等地表气象数据被作为输入输入到机器学习模型中。将GPS计算的IWV值与模型预测值进行了比较。RQ-GPR模型用GPS计算的IWV值与NN模型对比,显示出较好的精度。RQ-GPR模型的相关系数ρ为0.93,NN模型的相关系数ρ为0.86。RQ-GPR预测的IWV值的RMSE(均方根误差)优于NN模型。我们得到了RQ-GPR的均方误差(MSE)和平均绝对误差(MAE)分别为18.146 kg/m2和3.0762 kg/m2,而NN模型的均方误差(MSE)和平均绝对误差(MAE)分别为27.509 kg/m2和3.9102 kg/m2,这表明RQ-GPR是一种适合预测应用的模型。2014年10月发生的HUDHUD气旋事件被考虑用于测试提议的ML算法。RQ-GPR模型对IWV的预测效果优于NN模型。RQ-GPR模型的RMSE值为2.837 kg/m2, NN模型的RMSE值为3.327 kg/m2。结果表明,RQ-GPR模型比其他IWV预测模型具有更高的精度。预报结果对气象学、天气学和气候学的研究有一定的参考价值,对提高区域数值天气预报模式的精度也有一定的参考价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assessment of machine learning techniques for prediction of integrated water vapor using meteorological data
Weather and Climatological studies are very important in assessing atmospheric conditions like storms and cyclones. Integrated water vapor (IWV) is an important greenhouse gas in the atmosphere responsible for the Earth's radiative balance. Global Positioning System (GPS) observations have been used for monitoring the IWV variability.  The IWV estimations are carried out using ground-based GPS observations at Hyderabad (17.4°N, 78.46°E), India using GAMIT software. GAMIT is GPS analysis software developed by MIT, USA. It takes input as GPS observation data containing pseudo ranges, navigation data containing ephemeris, clock errors, g-files with orbital information, and meteorological data like pressure, temperature, and relative humidity to calculate IWV. However, estimating IWV for forecasting applications is impossible with a GPS system. This paper introduces a methodology to predict IWV during normal days and severe cyclonic events using machine learning (ML) techniques. Rational quadratic Gaussian process regression (RQ-GPR) and neural network (NN) algorithms are considered for identifying suitable ML prediction algorithms over tropical conditions. Meteorological surface data like Pressure, Temperature, and relative humidity are given as input to the machine learning models. The IWV values computed from GPS are compared with the model's predicted values. RQ-GPR model is showing good accuracy with the IWV values computed from GPS against the NN model. The correlation coefficient (ρ) achieved for RQ-GPR is 0.93, and 0.86 is obtained for the NN model. The RMSE (Root Mean Square Error) of the predicted IWV value with RQ-GPR is better than the NN model. We have obtained mean square error (MSE) and mean absolute error (MAE) as 18.146 kg/m2 and 3.0762 kg/m2 for RQ-GPR and 27.509 kg/m2 and 3.9102 kg/m2 for the NN model which is showing RQ-GPR is a suitable model for forecasting applications. The HUDHUD cyclonic event that occurred in October 2014 is considered for testing the proposed ML algorithms. RQ-GPR model has better results in the Prediction of IWV than the NN model. The RMSE value obtained is 2.837 kg/m2 for RQ-GPR and 3.327 kg/m2 obtained from the NN model. The results indicate that the RQ-GPR model has more accuracy than the other IWV prediction models. The prediction results are helpful for meteorology, weather, and climatology studies and useful to improve the accuracy of the regional numerical weather prediction models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
VIETNAM JOURNAL OF EARTH SCIENCES
VIETNAM JOURNAL OF EARTH SCIENCES GEOSCIENCES, MULTIDISCIPLINARY-
CiteScore
3.60
自引率
20.00%
发文量
0
期刊最新文献
Hybrid approach for permeability prediction in porous media: combining FFT simulations with machine learning Identification of the active faults and seismotectonic zonation of Laos territory Multi-step-ahead prediction of water levels using machine learning: A comparative analysis in the Vietnamese Mekong Delta Temporal and spatial variation in water quality in the Son La hydropower Reservoir, Northwestern Vietnam Application of hybrid modeling to predict California bearing ratio of soil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1