随机右截尾重尾数据的半参数尾指数估计

Saida Mancer, A. Necir, S. Benchaira
{"title":"随机右截尾重尾数据的半参数尾指数估计","authors":"Saida Mancer, A. Necir, S. Benchaira","doi":"10.1108/ajms-02-2022-0033","DOIUrl":null,"url":null,"abstract":"PurposeThe purpose of this paper is to propose a semiparametric estimator for the tail index of Pareto-type random truncated data that improves the existing ones in terms of mean square error. Moreover, we establish its consistency and asymptotic normality.Design/methodology/approachTo construct a root mean squared error (RMSE)-reduced estimator of the tail index, the authors used the semiparametric estimator of the underlying distribution function given by Wang (1989). This allows us to define the corresponding tail process and provide a weak approximation to this one. By means of a functional representation of the given estimator of the tail index and by using this weak approximation, the authors establish the asymptotic normality of the aforementioned RMSE-reduced estimator.FindingsIn basis on a semiparametric estimator of the underlying distribution function, the authors proposed a new estimation method to the tail index of Pareto-type distributions for randomly right-truncated data. Compared with the existing ones, this estimator behaves well both in terms of bias and RMSE. A useful weak approximation of the corresponding tail empirical process allowed us to establish both the consistency and asymptotic normality of the proposed estimator.Originality/valueA new tail semiparametric (empirical) process for truncated data is introduced, a new estimator for the tail index of Pareto-type truncated data is introduced and asymptotic normality of the proposed estimator is established.","PeriodicalId":36840,"journal":{"name":"Arab Journal of Mathematical Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semiparametric tail-index estimation for randomly right-truncated heavy-tailed data\",\"authors\":\"Saida Mancer, A. Necir, S. Benchaira\",\"doi\":\"10.1108/ajms-02-2022-0033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeThe purpose of this paper is to propose a semiparametric estimator for the tail index of Pareto-type random truncated data that improves the existing ones in terms of mean square error. Moreover, we establish its consistency and asymptotic normality.Design/methodology/approachTo construct a root mean squared error (RMSE)-reduced estimator of the tail index, the authors used the semiparametric estimator of the underlying distribution function given by Wang (1989). This allows us to define the corresponding tail process and provide a weak approximation to this one. By means of a functional representation of the given estimator of the tail index and by using this weak approximation, the authors establish the asymptotic normality of the aforementioned RMSE-reduced estimator.FindingsIn basis on a semiparametric estimator of the underlying distribution function, the authors proposed a new estimation method to the tail index of Pareto-type distributions for randomly right-truncated data. Compared with the existing ones, this estimator behaves well both in terms of bias and RMSE. A useful weak approximation of the corresponding tail empirical process allowed us to establish both the consistency and asymptotic normality of the proposed estimator.Originality/valueA new tail semiparametric (empirical) process for truncated data is introduced, a new estimator for the tail index of Pareto-type truncated data is introduced and asymptotic normality of the proposed estimator is established.\",\"PeriodicalId\":36840,\"journal\":{\"name\":\"Arab Journal of Mathematical Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arab Journal of Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/ajms-02-2022-0033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arab Journal of Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ajms-02-2022-0033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

目的本文的目的是为Pareto型随机截断数据的尾部指数提出一个半参数估计量,该估计量在均方误差方面改进了现有的估计量。此外,我们还建立了它的一致性和渐近正态性。设计/方法/方法为了构造尾指数的均方根误差(RMSE)减少估计量,作者使用了王(1989)给出的基本分布函数的半参数估计量。这使我们能够定义相应的尾部过程,并提供对此过程的弱近似。通过尾指数的给定估计量的函数表示,并利用这种弱近似,建立了上述RMSE约简估计量的渐近正态性。结果在底层分布函数的半参数估计的基础上,提出了一种新的随机右截断数据的Pareto型分布尾指数估计方法。与现有的估计器相比,该估计器在偏倚和均方根误差方面都表现良好。相应尾部经验过程的一个有用的弱近似使我们能够建立所提出估计量的一致性和渐近正态性。原始性/值引入了截断数据的一个新的尾部半参数(经验)过程,引入了Pareto型截断数据尾部指数的一个估计量,并建立了该估计量的渐近正态性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Semiparametric tail-index estimation for randomly right-truncated heavy-tailed data
PurposeThe purpose of this paper is to propose a semiparametric estimator for the tail index of Pareto-type random truncated data that improves the existing ones in terms of mean square error. Moreover, we establish its consistency and asymptotic normality.Design/methodology/approachTo construct a root mean squared error (RMSE)-reduced estimator of the tail index, the authors used the semiparametric estimator of the underlying distribution function given by Wang (1989). This allows us to define the corresponding tail process and provide a weak approximation to this one. By means of a functional representation of the given estimator of the tail index and by using this weak approximation, the authors establish the asymptotic normality of the aforementioned RMSE-reduced estimator.FindingsIn basis on a semiparametric estimator of the underlying distribution function, the authors proposed a new estimation method to the tail index of Pareto-type distributions for randomly right-truncated data. Compared with the existing ones, this estimator behaves well both in terms of bias and RMSE. A useful weak approximation of the corresponding tail empirical process allowed us to establish both the consistency and asymptotic normality of the proposed estimator.Originality/valueA new tail semiparametric (empirical) process for truncated data is introduced, a new estimator for the tail index of Pareto-type truncated data is introduced and asymptotic normality of the proposed estimator is established.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Arab Journal of Mathematical Sciences
Arab Journal of Mathematical Sciences Mathematics-Mathematics (all)
CiteScore
1.20
自引率
0.00%
发文量
17
审稿时长
8 weeks
期刊最新文献
On primality of Cartesian product of graphs Foundational aspects of a new matrix holomorphic structure L2-convergence of Yosida approximation for semi-linear backward stochastic differential equation with jumps in infinite dimension Structure theorem for Jordan algebra bundles Determinantal polynomials and the base polynomial of a square matrix over a finite field
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1