强调在双向测试中需要多种加载协议

Giovanni de Francesco, T. Sullivan, C. Nievas
{"title":"强调在双向测试中需要多种加载协议","authors":"Giovanni de Francesco, T. Sullivan, C. Nievas","doi":"10.5459/bnzsee.55.2.80-94","DOIUrl":null,"url":null,"abstract":"Major earthquakes, such as the Canterbury and Kaikoura events recorded in New Zealand in 2010-2011 and 2016 respectively, highlighted that floor systems can be heavily damaged. Quasi-static cyclic experimental tests of structural sub-assemblies can help to establish the seismic performance of structural systems. However, the experimental performance obtained with such tests is likely to be dependent on the loading protocol adopted. This paper provides an overview of the loading protocols which have been assumed in previous experimental activities, with emphasis on those adopted for testing floor systems. The paper also describes the procedure used to define the loading protocol applied in the testing of a large precast concrete floor diaphragm as part of the ReCast floor project jointly conducted by the University of Canterbury, the University of Auckland and BRANZ. Subsequently the limitations of current loading protocols for bi-directional testing are discussed. The relevance of local seismicity on bidirectional demand is demonstrated by examining a large dataset of records from the RESORCE database. It is concluded that bi-directional experimental testing be undertaken using at least two loading protocols that impose different ratios of demand in orthogonal directions.","PeriodicalId":46396,"journal":{"name":"Bulletin of the New Zealand Society for Earthquake Engineering","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highlighting the need for multiple loading protocols in bi-directional testing\",\"authors\":\"Giovanni de Francesco, T. Sullivan, C. Nievas\",\"doi\":\"10.5459/bnzsee.55.2.80-94\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Major earthquakes, such as the Canterbury and Kaikoura events recorded in New Zealand in 2010-2011 and 2016 respectively, highlighted that floor systems can be heavily damaged. Quasi-static cyclic experimental tests of structural sub-assemblies can help to establish the seismic performance of structural systems. However, the experimental performance obtained with such tests is likely to be dependent on the loading protocol adopted. This paper provides an overview of the loading protocols which have been assumed in previous experimental activities, with emphasis on those adopted for testing floor systems. The paper also describes the procedure used to define the loading protocol applied in the testing of a large precast concrete floor diaphragm as part of the ReCast floor project jointly conducted by the University of Canterbury, the University of Auckland and BRANZ. Subsequently the limitations of current loading protocols for bi-directional testing are discussed. The relevance of local seismicity on bidirectional demand is demonstrated by examining a large dataset of records from the RESORCE database. It is concluded that bi-directional experimental testing be undertaken using at least two loading protocols that impose different ratios of demand in orthogonal directions.\",\"PeriodicalId\":46396,\"journal\":{\"name\":\"Bulletin of the New Zealand Society for Earthquake Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the New Zealand Society for Earthquake Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5459/bnzsee.55.2.80-94\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the New Zealand Society for Earthquake Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5459/bnzsee.55.2.80-94","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

2010-2011年和2016年分别在新西兰记录的坎特伯雷和凯库拉地震等大地震突出表明,地面系统可能受到严重破坏。结构组件的准静力循环试验有助于确定结构体系的抗震性能。然而,通过此类试验获得的实验性能可能取决于所采用的加载协议。本文概述了在以前的实验活动中假设的加载协议,重点介绍了测试楼板系统所采用的加载协议。本文还描述了用于定义加载协议的程序,该加载协议适用于大型预制混凝土楼板横隔板测试,该测试是由坎特伯雷大学、奥克兰大学和BRANZ联合进行的ReCast楼板项目的一部分。随后讨论了当前双向测试加载协议的局限性。本地地震活动与双向需求的相关性通过检查来自resource数据库的大型记录数据集来证明。得出的结论是,双向试验测试应采用至少两种加载协议,施加不同比例的需求在正交方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Highlighting the need for multiple loading protocols in bi-directional testing
Major earthquakes, such as the Canterbury and Kaikoura events recorded in New Zealand in 2010-2011 and 2016 respectively, highlighted that floor systems can be heavily damaged. Quasi-static cyclic experimental tests of structural sub-assemblies can help to establish the seismic performance of structural systems. However, the experimental performance obtained with such tests is likely to be dependent on the loading protocol adopted. This paper provides an overview of the loading protocols which have been assumed in previous experimental activities, with emphasis on those adopted for testing floor systems. The paper also describes the procedure used to define the loading protocol applied in the testing of a large precast concrete floor diaphragm as part of the ReCast floor project jointly conducted by the University of Canterbury, the University of Auckland and BRANZ. Subsequently the limitations of current loading protocols for bi-directional testing are discussed. The relevance of local seismicity on bidirectional demand is demonstrated by examining a large dataset of records from the RESORCE database. It is concluded that bi-directional experimental testing be undertaken using at least two loading protocols that impose different ratios of demand in orthogonal directions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
17.60%
发文量
14
期刊最新文献
Earthquake design loads for retaining walls Infrastructure planning emergency levels of service for the Wellington region, Aotearoa New Zealand – An operationalised framework Seismic fragility of reinforced concrete buildings with hollow-core flooring systems Evaluation of the Inter-frequency Correlation of New Zealand CyberShake Crustal Earthquake Simulations Seismic protection of artefacts with adhesives and base-isolation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1