基于虚拟机的内存计算架构探索的定时精确仿真框架

IF 1 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS IT-Information Technology Pub Date : 2023-05-01 DOI:10.1515/itit-2023-0019
Vincent Rietz, Christopher Münch, M. Mayahinia, M. Tahoori
{"title":"基于虚拟机的内存计算架构探索的定时精确仿真框架","authors":"Vincent Rietz, Christopher Münch, M. Mayahinia, M. Tahoori","doi":"10.1515/itit-2023-0019","DOIUrl":null,"url":null,"abstract":"Abstract Data-intensive applications have a huge demand on processor-memory communication. To reduce the amount of data transfers and their associated latency and energy, Compute-in-Memory (CIM) architectures can be used to perform operations ranging from simple binary operations to more complex operations such as additions and matrix-vector multiplications directly within the memory. However, proper adjustments to the memory hierarchy are needed to enable the execution of CIM operations. To evaluate the trade-off between the usage of different emerging non-volatile memories for CIM and conventional computing architectures, this work extends the widely used gem5 simulation framework with an extensible timing-aware main memory CIM simulation capability. This framework is used to analyze the performance of CIM extended main memory with various emerging memory technologies, namely Spin-Transfer-Torque Magnetic Random Access Memory (STT-MRAM), Redox-based RAM (ReRAM) and Phase-Change Memory (PCM). We evaluate different workloads from the PolyBench/C benchmark suite and other selected examples. In comparison to a processor-centric system, the results show a significant reduction in execution time for the majority of applications.","PeriodicalId":43953,"journal":{"name":"IT-Information Technology","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Timing-accurate simulation framework for NVM-based compute-in-memory architecture exploration\",\"authors\":\"Vincent Rietz, Christopher Münch, M. Mayahinia, M. Tahoori\",\"doi\":\"10.1515/itit-2023-0019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Data-intensive applications have a huge demand on processor-memory communication. To reduce the amount of data transfers and their associated latency and energy, Compute-in-Memory (CIM) architectures can be used to perform operations ranging from simple binary operations to more complex operations such as additions and matrix-vector multiplications directly within the memory. However, proper adjustments to the memory hierarchy are needed to enable the execution of CIM operations. To evaluate the trade-off between the usage of different emerging non-volatile memories for CIM and conventional computing architectures, this work extends the widely used gem5 simulation framework with an extensible timing-aware main memory CIM simulation capability. This framework is used to analyze the performance of CIM extended main memory with various emerging memory technologies, namely Spin-Transfer-Torque Magnetic Random Access Memory (STT-MRAM), Redox-based RAM (ReRAM) and Phase-Change Memory (PCM). We evaluate different workloads from the PolyBench/C benchmark suite and other selected examples. In comparison to a processor-centric system, the results show a significant reduction in execution time for the majority of applications.\",\"PeriodicalId\":43953,\"journal\":{\"name\":\"IT-Information Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IT-Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/itit-2023-0019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IT-Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/itit-2023-0019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

数据密集型应用对处理器与存储器之间的通信有着巨大的需求。为了减少数据传输量及其相关的延迟和能量,可以使用内存中计算(CIM)体系结构直接在内存中执行从简单的二进制操作到更复杂的操作(如加法和矩阵向量乘法)的各种操作。但是,需要对内存层次结构进行适当的调整,以支持CIM操作的执行。为了评估用于CIM的不同新兴非易失性存储器和传统计算架构之间的权衡,本工作扩展了广泛使用的gem5仿真框架,具有可扩展的时序感知主存储器CIM仿真功能。该框架用于分析具有各种新兴存储技术的CIM扩展主存储器的性能,即自旋传输扭矩磁随机存取存储器(STT-MRAM),基于氧化氧化的RAM (ReRAM)和相变存储器(PCM)。我们从PolyBench/C基准套件和其他选定的示例中评估不同的工作负载。与以处理器为中心的系统相比,结果显示大多数应用程序的执行时间显著减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Timing-accurate simulation framework for NVM-based compute-in-memory architecture exploration
Abstract Data-intensive applications have a huge demand on processor-memory communication. To reduce the amount of data transfers and their associated latency and energy, Compute-in-Memory (CIM) architectures can be used to perform operations ranging from simple binary operations to more complex operations such as additions and matrix-vector multiplications directly within the memory. However, proper adjustments to the memory hierarchy are needed to enable the execution of CIM operations. To evaluate the trade-off between the usage of different emerging non-volatile memories for CIM and conventional computing architectures, this work extends the widely used gem5 simulation framework with an extensible timing-aware main memory CIM simulation capability. This framework is used to analyze the performance of CIM extended main memory with various emerging memory technologies, namely Spin-Transfer-Torque Magnetic Random Access Memory (STT-MRAM), Redox-based RAM (ReRAM) and Phase-Change Memory (PCM). We evaluate different workloads from the PolyBench/C benchmark suite and other selected examples. In comparison to a processor-centric system, the results show a significant reduction in execution time for the majority of applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IT-Information Technology
IT-Information Technology COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
3.80
自引率
0.00%
发文量
29
期刊最新文献
Wildfire prediction for California using and comparing Spatio-Temporal Knowledge Graphs Machine learning in AI Factories – five theses for developing, managing and maintaining data-driven artificial intelligence at large scale Machine learning applications Machine learning in sensor identification for industrial systems Machine learning and cyber security
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1