溶液中无配体单体人MALT1副半乳糖酶- igl3结构域的ivl -甲基侧链的定位

IF 0.8 4区 生物学 Q4 BIOPHYSICS Biomolecular NMR Assignments Pub Date : 2022-09-12 DOI:10.1007/s12104-022-10105-3
Xiao Han, Maria Levkovets, Dmitry Lesovoy, Renhua Sun, Johan Wallerstein, Tatyana Sandalova, Tatiana Agback, Adnane Achour, Peter Agback, Vladislav Yu. Orekhov
{"title":"溶液中无配体单体人MALT1副半乳糖酶- igl3结构域的ivl -甲基侧链的定位","authors":"Xiao Han,&nbsp;Maria Levkovets,&nbsp;Dmitry Lesovoy,&nbsp;Renhua Sun,&nbsp;Johan Wallerstein,&nbsp;Tatyana Sandalova,&nbsp;Tatiana Agback,&nbsp;Adnane Achour,&nbsp;Peter Agback,&nbsp;Vladislav Yu. Orekhov","doi":"10.1007/s12104-022-10105-3","DOIUrl":null,"url":null,"abstract":"<div><p>Mucosa-associated lymphoid tissue protein 1 (MALT1) plays a key role in adaptive immune responses by modulating specific intracellular signalling pathways that control the development and proliferation of both T and B cells. Dysfunction of these pathways is coupled to the progress of highly aggressive lymphoma as well as to potential development of an array of different immune disorders. In contrast to other signalling mediators, MALT1 is not only activated through the formation of the CBM complex together with the proteins CARMA1 and Bcl10, but also by acting as a protease that cleaves multiple substrates to promote lymphocyte proliferation and survival via the NF-κB signalling pathway. Herein, we present the partial <sup>1</sup>H, <sup>13</sup>C Ile/Val/Leu-Methyl resonance assignment of the monomeric apo form of the paracaspase-IgL<sub>3</sub> domain of human MALT1. Our results provide a solid ground for future elucidation of both the three-dimensional structure and the dynamics of MALT1, key for adequate development of inhibitors, and a thorough molecular understanding of its function(s).</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12104-022-10105-3.pdf","citationCount":"2","resultStr":"{\"title\":\"Assignment of IVL-Methyl side chain of the ligand-free monomeric human MALT1 paracaspase-IgL3 domain in solution\",\"authors\":\"Xiao Han,&nbsp;Maria Levkovets,&nbsp;Dmitry Lesovoy,&nbsp;Renhua Sun,&nbsp;Johan Wallerstein,&nbsp;Tatyana Sandalova,&nbsp;Tatiana Agback,&nbsp;Adnane Achour,&nbsp;Peter Agback,&nbsp;Vladislav Yu. Orekhov\",\"doi\":\"10.1007/s12104-022-10105-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mucosa-associated lymphoid tissue protein 1 (MALT1) plays a key role in adaptive immune responses by modulating specific intracellular signalling pathways that control the development and proliferation of both T and B cells. Dysfunction of these pathways is coupled to the progress of highly aggressive lymphoma as well as to potential development of an array of different immune disorders. In contrast to other signalling mediators, MALT1 is not only activated through the formation of the CBM complex together with the proteins CARMA1 and Bcl10, but also by acting as a protease that cleaves multiple substrates to promote lymphocyte proliferation and survival via the NF-κB signalling pathway. Herein, we present the partial <sup>1</sup>H, <sup>13</sup>C Ile/Val/Leu-Methyl resonance assignment of the monomeric apo form of the paracaspase-IgL<sub>3</sub> domain of human MALT1. Our results provide a solid ground for future elucidation of both the three-dimensional structure and the dynamics of MALT1, key for adequate development of inhibitors, and a thorough molecular understanding of its function(s).</p></div>\",\"PeriodicalId\":492,\"journal\":{\"name\":\"Biomolecular NMR Assignments\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s12104-022-10105-3.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecular NMR Assignments\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12104-022-10105-3\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecular NMR Assignments","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s12104-022-10105-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 2

摘要

粘膜相关淋巴组织蛋白1 (MALT1)通过调节控制T细胞和B细胞发育和增殖的特异性细胞内信号通路,在适应性免疫应答中发挥关键作用。这些途径的功能障碍与高度侵袭性淋巴瘤的进展以及一系列不同免疫疾病的潜在发展有关。与其他信号介质不同的是,MALT1不仅通过与CARMA1和Bcl10蛋白形成CBM复合物而被激活,而且还作为蛋白酶裂解多种底物,通过NF-κB信号通路促进淋巴细胞增殖和存活。在此,我们提出了部分1H, 13C Ile/Val/ leu -甲基共振分配的人MALT1的paracaspase-IgL3结构域的单体载子形式。我们的研究结果为未来阐明MALT1的三维结构和动力学提供了坚实的基础,这是充分开发抑制剂的关键,并对其功能进行彻底的分子理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assignment of IVL-Methyl side chain of the ligand-free monomeric human MALT1 paracaspase-IgL3 domain in solution

Mucosa-associated lymphoid tissue protein 1 (MALT1) plays a key role in adaptive immune responses by modulating specific intracellular signalling pathways that control the development and proliferation of both T and B cells. Dysfunction of these pathways is coupled to the progress of highly aggressive lymphoma as well as to potential development of an array of different immune disorders. In contrast to other signalling mediators, MALT1 is not only activated through the formation of the CBM complex together with the proteins CARMA1 and Bcl10, but also by acting as a protease that cleaves multiple substrates to promote lymphocyte proliferation and survival via the NF-κB signalling pathway. Herein, we present the partial 1H, 13C Ile/Val/Leu-Methyl resonance assignment of the monomeric apo form of the paracaspase-IgL3 domain of human MALT1. Our results provide a solid ground for future elucidation of both the three-dimensional structure and the dynamics of MALT1, key for adequate development of inhibitors, and a thorough molecular understanding of its function(s).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomolecular NMR Assignments
Biomolecular NMR Assignments 生物-光谱学
CiteScore
1.70
自引率
11.10%
发文量
59
审稿时长
6-12 weeks
期刊介绍: Biomolecular NMR Assignments provides a forum for publishing sequence-specific resonance assignments for proteins and nucleic acids as Assignment Notes. Chemical shifts for NMR-active nuclei in macromolecules contain detailed information on molecular conformation and properties. Publication of resonance assignments in Biomolecular NMR Assignments ensures that these data are deposited into a public database at BioMagResBank (BMRB; http://www.bmrb.wisc.edu/), where they are available to other researchers. Coverage includes proteins and nucleic acids; Assignment Notes are processed for rapid online publication and are published in biannual online editions in June and December.
期刊最新文献
1H, 15N and 13C backbone resonance assignment of the N-terminal region of Zika virus NS4B protein in detergent micelles. Backbone 1H, 15N, and 13C resonance assignments of the FF1 domain from P190A RhoGAP in 5 and 8 M urea Imino chemical shift assignments of tRNAAsp, tRNAVal and tRNAPhe from Escherichia coli NMR assignment of the conserved bacterial DNA replication protein DnaA domain IV Backbone assignments of the biotin carboxyl carrier protein domain of Propionyl CoA carboxylase of Leishmania major and its interaction with its cognate Biotin protein ligase
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1