木犀草科纤维素纳米纤维增强壳聚糖基薄膜

Q2 Materials Science Polymers from Renewable Resources Pub Date : 2021-02-01 DOI:10.1177/20412479211008747
DG Braga, Pgf Bezerra, Abfd Lima, HA Pinheiro, LG Gomes, AS Fonseca, L. Bufalino
{"title":"木犀草科纤维素纳米纤维增强壳聚糖基薄膜","authors":"DG Braga, Pgf Bezerra, Abfd Lima, HA Pinheiro, LG Gomes, AS Fonseca, L. Bufalino","doi":"10.1177/20412479211008747","DOIUrl":null,"url":null,"abstract":"The use of local raw materials for the production of biodegradable films can simultaneously contribute to the development of the Amazon and global sustainability. This work aimed to evaluate the physical and mechanical performance of chitosan-based bionanocomposite films reinforced with different loads of cellulose nanofibrils obtained from açaí (Euterpe oleraceae Mart.) under two nanofibrillation degrees. Nanofibrils were obtained by 3 and 21 passages in a grinder defibrillator. The films were produced by casting with nanofibril reinforcement at 5 wt.%, 10 wt.%, 15 wt.%, and 20 wt.%. The increase in the nanofibril level and nanofibrillation degree reduced water vapor absorption (75.20% to 51.93%), water solubility (28.33% to 17.91%), and density (0.87 g.cm−3 to 0.61 g.cm−3). The water vapor permeability decreased with higher nanofibril loads for both 3-pass (47.30% to 43.61%) and 21-pass (49.82% to 44.48%) reinforced films, but not with nanofibrillation degree. The increase in 3-pass nanofibril level decreased tensile strength (8.18 MPa to 7.88 MPa), modulus of elasticity (867.62 MPa to 670.02 MPa) and elongation at break (0.02 mm.mm−1 to 0.01 mm.mm−1). However, the opposite effect happened to 21-pass nanofibrils, with increases from 9.16 MPa to 9.73 MPa and from 502.00 MPa to 1119.62 MPa for tensile strength and modulus of elasticity, respectively. Meanwhile, the maximum elongation at rupture did not vary. It was concluded that chitosan-based bionanocomposite films reinforced with 20 wt.% of 21-pass nanofibril were more resistant, except for water vapor permeability. Adding coarser nanofibrils enhanced this property. The 3-pass nanofibrils reinforcement enables water solubility, which benefits other packaging applications.","PeriodicalId":20353,"journal":{"name":"Polymers from Renewable Resources","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/20412479211008747","citationCount":"6","resultStr":"{\"title\":\"Chitosan-based films reinforced with cellulose nanofibrils isolated from Euterpe oleraceae MART\",\"authors\":\"DG Braga, Pgf Bezerra, Abfd Lima, HA Pinheiro, LG Gomes, AS Fonseca, L. Bufalino\",\"doi\":\"10.1177/20412479211008747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of local raw materials for the production of biodegradable films can simultaneously contribute to the development of the Amazon and global sustainability. This work aimed to evaluate the physical and mechanical performance of chitosan-based bionanocomposite films reinforced with different loads of cellulose nanofibrils obtained from açaí (Euterpe oleraceae Mart.) under two nanofibrillation degrees. Nanofibrils were obtained by 3 and 21 passages in a grinder defibrillator. The films were produced by casting with nanofibril reinforcement at 5 wt.%, 10 wt.%, 15 wt.%, and 20 wt.%. The increase in the nanofibril level and nanofibrillation degree reduced water vapor absorption (75.20% to 51.93%), water solubility (28.33% to 17.91%), and density (0.87 g.cm−3 to 0.61 g.cm−3). The water vapor permeability decreased with higher nanofibril loads for both 3-pass (47.30% to 43.61%) and 21-pass (49.82% to 44.48%) reinforced films, but not with nanofibrillation degree. The increase in 3-pass nanofibril level decreased tensile strength (8.18 MPa to 7.88 MPa), modulus of elasticity (867.62 MPa to 670.02 MPa) and elongation at break (0.02 mm.mm−1 to 0.01 mm.mm−1). However, the opposite effect happened to 21-pass nanofibrils, with increases from 9.16 MPa to 9.73 MPa and from 502.00 MPa to 1119.62 MPa for tensile strength and modulus of elasticity, respectively. Meanwhile, the maximum elongation at rupture did not vary. It was concluded that chitosan-based bionanocomposite films reinforced with 20 wt.% of 21-pass nanofibril were more resistant, except for water vapor permeability. Adding coarser nanofibrils enhanced this property. The 3-pass nanofibrils reinforcement enables water solubility, which benefits other packaging applications.\",\"PeriodicalId\":20353,\"journal\":{\"name\":\"Polymers from Renewable Resources\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/20412479211008747\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers from Renewable Resources\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/20412479211008747\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers from Renewable Resources","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/20412479211008747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 6

摘要

使用当地的原材料生产可生物降解的薄膜可以同时促进亚马逊的发展和全球的可持续性。本研究旨在评价不同负载的açaí (Euterpe oleraceae Mart.)纳米纤维素增强壳聚糖基生物纳米复合膜在两种纳米纤维强度下的物理力学性能。在研磨除颤器中通过3次和21次传代获得纳米原纤维。分别以5wt .%、10wt .%、15wt .%和20wt .%的纳米纤维增强剂进行浇铸制备薄膜。纳米纤维水平和纳米纤维程度的增加降低了水蒸气吸收率(75.20% ~ 51.93%)、水溶性(28.33% ~ 17.91%)和密度(0.87 g.cm−3 ~ 0.61 g.cm−3)。3通(47.30% ~ 43.61%)和21通(49.82% ~ 44.48%)增强膜的水蒸气透气性随纳米纤维负荷的增加而降低,但与纳米纤维强度无关。三道次纳米纤维含量的增加使抗拉强度(8.18 MPa ~ 7.88 MPa)、弹性模量(867.62 MPa ~ 670.02 MPa)和断裂伸长率(0.02 mm.mm−1 ~ 0.01 mm.mm−1)降低。21道纳米原纤维的拉伸强度和弹性模量分别从9.16 MPa和502.00 MPa增加到9.73 MPa和1119.62 MPa。同时,断裂时的最大伸长率没有变化。结果表明,添加20 wt.%的21通级纳米纤维增强壳聚糖基生物纳米复合膜,除透气性外,具有更好的耐水性。添加较粗的纳米原纤维增强了这一性能。3-pass纳米纤维增强使水溶性,这有利于其他包装应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Chitosan-based films reinforced with cellulose nanofibrils isolated from Euterpe oleraceae MART
The use of local raw materials for the production of biodegradable films can simultaneously contribute to the development of the Amazon and global sustainability. This work aimed to evaluate the physical and mechanical performance of chitosan-based bionanocomposite films reinforced with different loads of cellulose nanofibrils obtained from açaí (Euterpe oleraceae Mart.) under two nanofibrillation degrees. Nanofibrils were obtained by 3 and 21 passages in a grinder defibrillator. The films were produced by casting with nanofibril reinforcement at 5 wt.%, 10 wt.%, 15 wt.%, and 20 wt.%. The increase in the nanofibril level and nanofibrillation degree reduced water vapor absorption (75.20% to 51.93%), water solubility (28.33% to 17.91%), and density (0.87 g.cm−3 to 0.61 g.cm−3). The water vapor permeability decreased with higher nanofibril loads for both 3-pass (47.30% to 43.61%) and 21-pass (49.82% to 44.48%) reinforced films, but not with nanofibrillation degree. The increase in 3-pass nanofibril level decreased tensile strength (8.18 MPa to 7.88 MPa), modulus of elasticity (867.62 MPa to 670.02 MPa) and elongation at break (0.02 mm.mm−1 to 0.01 mm.mm−1). However, the opposite effect happened to 21-pass nanofibrils, with increases from 9.16 MPa to 9.73 MPa and from 502.00 MPa to 1119.62 MPa for tensile strength and modulus of elasticity, respectively. Meanwhile, the maximum elongation at rupture did not vary. It was concluded that chitosan-based bionanocomposite films reinforced with 20 wt.% of 21-pass nanofibril were more resistant, except for water vapor permeability. Adding coarser nanofibrils enhanced this property. The 3-pass nanofibrils reinforcement enables water solubility, which benefits other packaging applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymers from Renewable Resources
Polymers from Renewable Resources Materials Science-Polymers and Plastics
CiteScore
3.50
自引率
0.00%
发文量
15
期刊介绍: Polymers from Renewable Resources, launched in 2010, publishes leading peer reviewed research that is focused on the development of renewable polymers and their application in the production of industrial, consumer, and medical products. The progressive decline of fossil resources, together with the ongoing increases in oil prices, has initiated an increase in the search for alternatives based on renewable resources for the production of energy. The prevalence of petroleum and carbon based chemistry for the production of organic chemical goods has generated a variety of initiatives aimed at replacing fossil sources with renewable counterparts. In particular, major efforts are being conducted in polymer science and technology to prepare macromolecular materials based on renewable resources. Also gaining momentum is the utilisation of vegetable biomass either by the separation of its components and their development or after suitable chemical modification. This journal is a valuable addition to academic, research and industrial libraries, research institutions dealing with the use of natural resources and materials science and industrial laboratories concerned with polymer science.
期刊最新文献
Polymers from renewable resources: Drug delivery platforms for transdermal delivery Lactic acid-facilitated surface modification of nanocellulose extracted from Borassus flabellifer leaves Recent advances in enhancing thermoelectric performance of polymeric materials Exploring the performance of bio-based PLA/PHB blends: A comprehensive analysis Production of nanocomposite films based on low density polyethylene/surface activated nanoperlite for modified atmosphere packaging applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1