微织构PCBN刀具的切削性能

IF 3.5 3区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering Pub Date : 2021-04-28 DOI:10.1063/10.0004372
L. Fan, Zilong Deng, Xingjun Gao, Yan He
{"title":"微织构PCBN刀具的切削性能","authors":"L. Fan, Zilong Deng, Xingjun Gao, Yan He","doi":"10.1063/10.0004372","DOIUrl":null,"url":null,"abstract":"To study the effect of micro-texture on the cutting performance of polycrystalline cubic boron nitride (PCBN) tools, five types of micro-textures (circular pits, elliptical grooves, transverse grooves, composite grooves, and wavy grooves) were applied to the rake surface of PCBN tools by an optical fiber laser marking machine. Through a combination of three-dimensional cutting simulations and experiments, the influences of micro-texture on chip–tool contact area, cutting force, chip morphology, shear angle, and surface roughness during the cutting process were analyzed. The results indicated that the chip–tool contact area and cutting force of both non-textured and micro-textured tools increased with increasing cutting speed, while the shear angle decreased with increasing cutting speed. The chip–tool contact area and cutting force of the five types of micro-textured tools were smaller than those of the non-textured tool. The chip–tool contact area and cutting force obtained by the wavy-groove micro-textured tool were the smallest. The chip radius produced by the five types of micro-textured tools was smaller than that produced by the non-textured tool, and the chip morphology was more stable. The transverse-groove micro-textured tool had a better chip breaking effect. The chip radius generated by the elliptical-groove micro-textured tool was 0.96 cm, while that generated by the wavy-groove tool varied from 0.55 cm to 1.26 cm. The presence of a micro-texture reduced the surface roughness of the workpiece by 11.73%–56.7%. Under the same cutting conditions, the five types of micro-textured tools gave a smaller chip–tool contact area, cutting force, chip radius, and surface roughness and a larger shear angle than the non-textured tool. In addition, the elliptical-groove and wavy-groove micro-textured tools had better cutting performance.","PeriodicalId":35428,"journal":{"name":"Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2021-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1063/10.0004372","citationCount":"4","resultStr":"{\"title\":\"Cutting performance of micro-textured PCBN tool\",\"authors\":\"L. Fan, Zilong Deng, Xingjun Gao, Yan He\",\"doi\":\"10.1063/10.0004372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To study the effect of micro-texture on the cutting performance of polycrystalline cubic boron nitride (PCBN) tools, five types of micro-textures (circular pits, elliptical grooves, transverse grooves, composite grooves, and wavy grooves) were applied to the rake surface of PCBN tools by an optical fiber laser marking machine. Through a combination of three-dimensional cutting simulations and experiments, the influences of micro-texture on chip–tool contact area, cutting force, chip morphology, shear angle, and surface roughness during the cutting process were analyzed. The results indicated that the chip–tool contact area and cutting force of both non-textured and micro-textured tools increased with increasing cutting speed, while the shear angle decreased with increasing cutting speed. The chip–tool contact area and cutting force of the five types of micro-textured tools were smaller than those of the non-textured tool. The chip–tool contact area and cutting force obtained by the wavy-groove micro-textured tool were the smallest. The chip radius produced by the five types of micro-textured tools was smaller than that produced by the non-textured tool, and the chip morphology was more stable. The transverse-groove micro-textured tool had a better chip breaking effect. The chip radius generated by the elliptical-groove micro-textured tool was 0.96 cm, while that generated by the wavy-groove tool varied from 0.55 cm to 1.26 cm. The presence of a micro-texture reduced the surface roughness of the workpiece by 11.73%–56.7%. Under the same cutting conditions, the five types of micro-textured tools gave a smaller chip–tool contact area, cutting force, chip radius, and surface roughness and a larger shear angle than the non-textured tool. In addition, the elliptical-groove and wavy-groove micro-textured tools had better cutting performance.\",\"PeriodicalId\":35428,\"journal\":{\"name\":\"Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2021-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1063/10.0004372\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.1063/10.0004372\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1063/10.0004372","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

摘要

为了研究微织构对多晶立方氮化硼(PCBN)刀具切削性能的影响,利用光纤激光打标机在PCBN刀具的前刀面上施加了五种微织构(圆形凹坑、椭圆形凹槽、横向凹槽、复合凹槽和波浪形凹槽)。通过三维切削模拟和实验相结合,分析了切削过程中微观织构对切屑-刀具接触面积、切削力、切屑形态、剪切角和表面粗糙度的影响。结果表明,无论是非织构刀具还是微织构刀具,其切屑-刀具接触面积和切削力都随切削速度的增加而增加,而剪切角则随切削速度增加而减小。五种微织构刀具的切屑-刀具接触面积和切削力均小于非织构刀具。波形槽微织构刀具获得的切屑-刀具接触面积和切削力最小。五种微织构刀具产生的切屑半径均小于非织构刀具,切屑形态更加稳定。横向槽微织构刀具具有较好的断屑效果。椭圆槽微纹理刀具产生的切屑半径为0.96cm,而波浪槽刀具产生的切削屑半径在0.55cm至1.26cm之间。微纹理的存在使工件的表面粗糙度降低了11.73%-56.7%。在相同的切削条件下,五种类型的微纹理刀具的切屑-刀具接触面积、切削力,切屑半径和表面粗糙度以及比无纹理工具更大的剪切角。此外,椭圆槽和波浪槽微细织构刀具具有较好的切削性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cutting performance of micro-textured PCBN tool
To study the effect of micro-texture on the cutting performance of polycrystalline cubic boron nitride (PCBN) tools, five types of micro-textures (circular pits, elliptical grooves, transverse grooves, composite grooves, and wavy grooves) were applied to the rake surface of PCBN tools by an optical fiber laser marking machine. Through a combination of three-dimensional cutting simulations and experiments, the influences of micro-texture on chip–tool contact area, cutting force, chip morphology, shear angle, and surface roughness during the cutting process were analyzed. The results indicated that the chip–tool contact area and cutting force of both non-textured and micro-textured tools increased with increasing cutting speed, while the shear angle decreased with increasing cutting speed. The chip–tool contact area and cutting force of the five types of micro-textured tools were smaller than those of the non-textured tool. The chip–tool contact area and cutting force obtained by the wavy-groove micro-textured tool were the smallest. The chip radius produced by the five types of micro-textured tools was smaller than that produced by the non-textured tool, and the chip morphology was more stable. The transverse-groove micro-textured tool had a better chip breaking effect. The chip radius generated by the elliptical-groove micro-textured tool was 0.96 cm, while that generated by the wavy-groove tool varied from 0.55 cm to 1.26 cm. The presence of a micro-texture reduced the surface roughness of the workpiece by 11.73%–56.7%. Under the same cutting conditions, the five types of micro-textured tools gave a smaller chip–tool contact area, cutting force, chip radius, and surface roughness and a larger shear angle than the non-textured tool. In addition, the elliptical-groove and wavy-groove micro-textured tools had better cutting performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering
Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering Engineering-Industrial and Manufacturing Engineering
CiteScore
6.50
自引率
0.00%
发文量
1379
审稿时长
14 weeks
期刊最新文献
Comparative analysis of single-crater parameters in ultrasonic-assisted and unassisted micro-EDM of Ti6Al4V using discharge plasma imaging Simulation and fabrication of in vitro microfluidic microelectrode array chip for patterned culture and electrophysiological detection of neurons An advanced cost-efficient IoT method for stroke rehabilitation using smart gloves Design and analysis of longitudinal–flexural hybrid transducer for ultrasonic peen forming Droplet microfluidic chip for precise monitoring of dynamic solution changes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1