Yanrui Li, Yinghui Wei, Bao-sheng Liu, L. Hou, Shaohua Zhang, W. Liu
{"title":"晶体取向与使用环境对无取向硅钢腐蚀相互作用的认识","authors":"Yanrui Li, Yinghui Wei, Bao-sheng Liu, L. Hou, Shaohua Zhang, W. Liu","doi":"10.5006/4237","DOIUrl":null,"url":null,"abstract":"The effect of crystallographic orientation and environment factors on the corrosion behavior of 35TWV1900 non-oriented silicon steel at various temperatures (25, 40 and 60 °C) and Cl− concentrations (0.1, 0.6 and 1 mol/L) was investigated by electrochemical tests and immersion experiments. The results have revealed that the (111) plane exhibits a higher corrosion rate compared with (001) and (101) planes. The increased temperature promotes the anodic dissolution of the substrate, accelerating the formation of corrosion products and the transformation of β/γ-FeOOH to α-FeOOH/Fe3O4. In the immersion environment, the corrosion mechanism is a typical oxygen-absorbing corrosion mechanism. During the electrochemical reaction phase, the corrosion rate shows a trend of first increasing and then decreasing with the increase of Cl− concentration, which can be explained by the catalytic dissolution effect and the protective effect of adsorbed Cl− on the surface. Meanwhile, with the injection of Cl−, the content of dissolved oxygen in the solution decreases and the adsorption competition between Cl− and oxygen increases, leading to the reduction of corrosion rate and inhibiting the formation of oxide film. The two stages of corrosion in an immersion environment are described, and the corrosion mechanism is elucidated.","PeriodicalId":10717,"journal":{"name":"Corrosion","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding of the interaction between crystallographic orientation and service environment on non-oriented silicon steel corrosion\",\"authors\":\"Yanrui Li, Yinghui Wei, Bao-sheng Liu, L. Hou, Shaohua Zhang, W. Liu\",\"doi\":\"10.5006/4237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effect of crystallographic orientation and environment factors on the corrosion behavior of 35TWV1900 non-oriented silicon steel at various temperatures (25, 40 and 60 °C) and Cl− concentrations (0.1, 0.6 and 1 mol/L) was investigated by electrochemical tests and immersion experiments. The results have revealed that the (111) plane exhibits a higher corrosion rate compared with (001) and (101) planes. The increased temperature promotes the anodic dissolution of the substrate, accelerating the formation of corrosion products and the transformation of β/γ-FeOOH to α-FeOOH/Fe3O4. In the immersion environment, the corrosion mechanism is a typical oxygen-absorbing corrosion mechanism. During the electrochemical reaction phase, the corrosion rate shows a trend of first increasing and then decreasing with the increase of Cl− concentration, which can be explained by the catalytic dissolution effect and the protective effect of adsorbed Cl− on the surface. Meanwhile, with the injection of Cl−, the content of dissolved oxygen in the solution decreases and the adsorption competition between Cl− and oxygen increases, leading to the reduction of corrosion rate and inhibiting the formation of oxide film. The two stages of corrosion in an immersion environment are described, and the corrosion mechanism is elucidated.\",\"PeriodicalId\":10717,\"journal\":{\"name\":\"Corrosion\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Corrosion\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.5006/4237\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.5006/4237","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Understanding of the interaction between crystallographic orientation and service environment on non-oriented silicon steel corrosion
The effect of crystallographic orientation and environment factors on the corrosion behavior of 35TWV1900 non-oriented silicon steel at various temperatures (25, 40 and 60 °C) and Cl− concentrations (0.1, 0.6 and 1 mol/L) was investigated by electrochemical tests and immersion experiments. The results have revealed that the (111) plane exhibits a higher corrosion rate compared with (001) and (101) planes. The increased temperature promotes the anodic dissolution of the substrate, accelerating the formation of corrosion products and the transformation of β/γ-FeOOH to α-FeOOH/Fe3O4. In the immersion environment, the corrosion mechanism is a typical oxygen-absorbing corrosion mechanism. During the electrochemical reaction phase, the corrosion rate shows a trend of first increasing and then decreasing with the increase of Cl− concentration, which can be explained by the catalytic dissolution effect and the protective effect of adsorbed Cl− on the surface. Meanwhile, with the injection of Cl−, the content of dissolved oxygen in the solution decreases and the adsorption competition between Cl− and oxygen increases, leading to the reduction of corrosion rate and inhibiting the formation of oxide film. The two stages of corrosion in an immersion environment are described, and the corrosion mechanism is elucidated.
期刊介绍:
CORROSION is the premier research journal featuring peer-reviewed technical articles from the world’s top researchers and provides a permanent record of progress in the science and technology of corrosion prevention and control. The scope of the journal includes the latest developments in areas of corrosion metallurgy, mechanisms, predictors, cracking (sulfide stress, stress corrosion, hydrogen-induced), passivation, and CO2 corrosion.
70+ years and over 7,100 peer-reviewed articles with advances in corrosion science and engineering have been published in CORROSION. The journal publishes seven article types – original articles, invited critical reviews, technical notes, corrosion communications fast-tracked for rapid publication, special research topic issues, research letters of yearly annual conference student poster sessions, and scientific investigations of field corrosion processes. CORROSION, the Journal of Science and Engineering, serves as an important communication platform for academics, researchers, technical libraries, and universities.
Articles considered for CORROSION should have significant permanent value and should accomplish at least one of the following objectives:
• Contribute awareness of corrosion phenomena,
• Advance understanding of fundamental process, and/or
• Further the knowledge of techniques and practices used to reduce corrosion.