热导率表征的皮秒瞬态热反射

IF 2.7 3区 工程技术 Q2 ENGINEERING, MECHANICAL Nanoscale and Microscale Thermophysical Engineering Pub Date : 2018-08-15 DOI:10.1080/15567265.2019.1580807
Jihoon Jeong, Xianghai Meng, A. Rockwell, S. Bank, W. Hsieh, Jung‐Fu Lin, Yaguo Wang
{"title":"热导率表征的皮秒瞬态热反射","authors":"Jihoon Jeong, Xianghai Meng, A. Rockwell, S. Bank, W. Hsieh, Jung‐Fu Lin, Yaguo Wang","doi":"10.1080/15567265.2019.1580807","DOIUrl":null,"url":null,"abstract":"ABSTRACT We developed a picosecond transient thermoreflectance (ps-TTR) system for thermal property characterization, using a low-repetition-rate picosecond pulsed laser (1064 nm) as the heating source and a 532 nm CW laser as the probe. Low-repetition-rate pump eliminates the complication from thermal accumulation effect. Without the need of a mechanical delay stage, this ps-TTR system can measure the thermal decay curve from 500 ps up to 1 ms. Three groups of samples are tested: bulk crystals (glass, Si, GaAs, and sapphire); MoS2 thin films (157 ~ 900 nm thickness); InGaAs random alloy and GaAs/InAs digital alloy (short period superlattices). Analysis of the thermoreflectance signals shows that this ps-TTR system is able to measure both thermal conductivity and interface conductance in nanostructures. The measured thermal conductivity values in bulk crystals, MoS2 thin films, and InGaAs random alloy are all consistent with literature values. Cross-plane thermal conductivity in MoS2 thin films does not show obvious thickness dependence. Thermal conductivities of GaAs/InAs digital alloys are smaller than InGaAs random alloy, due to the efficient scattering at interfaces. We also discuss the advantages and disadvantages of this newly developed ps-TTR system comparing with the popular time-domain thermoreflectance system.","PeriodicalId":49784,"journal":{"name":"Nanoscale and Microscale Thermophysical Engineering","volume":"23 1","pages":"211 - 221"},"PeriodicalIF":2.7000,"publicationDate":"2018-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15567265.2019.1580807","citationCount":"13","resultStr":"{\"title\":\"Picosecond transient thermoreflectance for thermal conductivity characterization\",\"authors\":\"Jihoon Jeong, Xianghai Meng, A. Rockwell, S. Bank, W. Hsieh, Jung‐Fu Lin, Yaguo Wang\",\"doi\":\"10.1080/15567265.2019.1580807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT We developed a picosecond transient thermoreflectance (ps-TTR) system for thermal property characterization, using a low-repetition-rate picosecond pulsed laser (1064 nm) as the heating source and a 532 nm CW laser as the probe. Low-repetition-rate pump eliminates the complication from thermal accumulation effect. Without the need of a mechanical delay stage, this ps-TTR system can measure the thermal decay curve from 500 ps up to 1 ms. Three groups of samples are tested: bulk crystals (glass, Si, GaAs, and sapphire); MoS2 thin films (157 ~ 900 nm thickness); InGaAs random alloy and GaAs/InAs digital alloy (short period superlattices). Analysis of the thermoreflectance signals shows that this ps-TTR system is able to measure both thermal conductivity and interface conductance in nanostructures. The measured thermal conductivity values in bulk crystals, MoS2 thin films, and InGaAs random alloy are all consistent with literature values. Cross-plane thermal conductivity in MoS2 thin films does not show obvious thickness dependence. Thermal conductivities of GaAs/InAs digital alloys are smaller than InGaAs random alloy, due to the efficient scattering at interfaces. We also discuss the advantages and disadvantages of this newly developed ps-TTR system comparing with the popular time-domain thermoreflectance system.\",\"PeriodicalId\":49784,\"journal\":{\"name\":\"Nanoscale and Microscale Thermophysical Engineering\",\"volume\":\"23 1\",\"pages\":\"211 - 221\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2018-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15567265.2019.1580807\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale and Microscale Thermophysical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/15567265.2019.1580807\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale and Microscale Thermophysical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15567265.2019.1580807","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 13

摘要

采用低重复率皮秒脉冲激光器(1064 nm)作为热源,532 nm连续波激光器作为探针,建立了皮秒瞬态热反射(ps-TTR)系统用于热性能表征。低重复率泵消除了热积累效应的复杂性。在不需要机械延迟阶段的情况下,该ps- ttr系统可以测量从500ps到1ms的热衰减曲线。测试了三组样品:大块晶体(玻璃、Si、砷化镓和蓝宝石);MoS2薄膜(厚度157 ~ 900 nm);InGaAs无规合金和GaAs/InAs数字合金(短周期超晶格)。热反射信号分析表明,ps-TTR系统能够同时测量纳米结构的导热系数和界面电导。体晶、MoS2薄膜和InGaAs无规合金的导热系数均与文献值一致。二硫化钼薄膜的平面导热系数不表现出明显的厚度依赖性。由于界面处的有效散射,GaAs/InAs数字合金的导热系数比InGaAs随机合金小。本文还讨论了新开发的ps-TTR系统与常用时域热反射系统的优缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Picosecond transient thermoreflectance for thermal conductivity characterization
ABSTRACT We developed a picosecond transient thermoreflectance (ps-TTR) system for thermal property characterization, using a low-repetition-rate picosecond pulsed laser (1064 nm) as the heating source and a 532 nm CW laser as the probe. Low-repetition-rate pump eliminates the complication from thermal accumulation effect. Without the need of a mechanical delay stage, this ps-TTR system can measure the thermal decay curve from 500 ps up to 1 ms. Three groups of samples are tested: bulk crystals (glass, Si, GaAs, and sapphire); MoS2 thin films (157 ~ 900 nm thickness); InGaAs random alloy and GaAs/InAs digital alloy (short period superlattices). Analysis of the thermoreflectance signals shows that this ps-TTR system is able to measure both thermal conductivity and interface conductance in nanostructures. The measured thermal conductivity values in bulk crystals, MoS2 thin films, and InGaAs random alloy are all consistent with literature values. Cross-plane thermal conductivity in MoS2 thin films does not show obvious thickness dependence. Thermal conductivities of GaAs/InAs digital alloys are smaller than InGaAs random alloy, due to the efficient scattering at interfaces. We also discuss the advantages and disadvantages of this newly developed ps-TTR system comparing with the popular time-domain thermoreflectance system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale and Microscale Thermophysical Engineering
Nanoscale and Microscale Thermophysical Engineering 工程技术-材料科学:表征与测试
CiteScore
5.90
自引率
2.40%
发文量
12
审稿时长
3.3 months
期刊介绍: Nanoscale and Microscale Thermophysical Engineering is a journal covering the basic science and engineering of nanoscale and microscale energy and mass transport, conversion, and storage processes. In addition, the journal addresses the uses of these principles for device and system applications in the fields of energy, environment, information, medicine, and transportation. The journal publishes both original research articles and reviews of historical accounts, latest progresses, and future directions in this rapidly advancing field. Papers deal with such topics as: transport and interactions of electrons, phonons, photons, and spins in solids, interfacial energy transport and phase change processes, microscale and nanoscale fluid and mass transport and chemical reaction, molecular-level energy transport, storage, conversion, reaction, and phase transition, near field thermal radiation and plasmonic effects, ultrafast and high spatial resolution measurements, multi length and time scale modeling and computations, processing of nanostructured materials, including composites, micro and nanoscale manufacturing, energy conversion and storage devices and systems, thermal management devices and systems, microfluidic and nanofluidic devices and systems, molecular analysis devices and systems.
期刊最新文献
Mesoscopic Study on Effective Thermal Conductivity of Aerogel Based on a Modified LBM Thermoelectric Phenomena in a Magnetic Heterostructure with AAH Modulation: Charge and Spin Figure of Merits Coupling of Surface Plasmon Polaritons and Hyperbolic Phonon Polaritons on the Near-Field Radiative Heat Transfer Between Multilayer Graphene/hBN Structures Thermodynamic control the self-assembled formation of vertically aligned nanocomposite thin film Elasto-Thermodiffusive Microtemperature Model Induced by a Mechanical Ramp-Type of Nanoscale Photoexcited Semiconductor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1