A. Arafat, Sabrin A. Samad, J. Titman, A. Lewis, E. Barney, I. Ahmed
{"title":"掺钇磷酸盐基玻璃:结构和降解分析","authors":"A. Arafat, Sabrin A. Samad, J. Titman, A. Lewis, E. Barney, I. Ahmed","doi":"10.1515/bglass-2020-0004","DOIUrl":null,"url":null,"abstract":"Abstract This study investigates the role of yttrium in phosphate-based glasses in the system 45(P2O5)–25(CaO)– (30-x)(Na2O)–x(Y2O3) (0≤x≤5) prepared via melt quenching and focuses on their structural characterisation and degradation properties. The structural analyses were performed using a combination of solid-state nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). 31P NMR analysis showed that depolymerisation of the phosphate network occurred which increased with Y2O3 content as metaphosphate units (Q2) decreased with subsequent increase in pyrophosphate species (Q1). The NMR results correlated well with structural changes observed via FTIR and XPS analyses. XRD analysis of crystallised glass samples revealed the presence of calcium pyrophosphate (Ca2P2O7) and sodium metaphosphate (NaPO3) phases for all the glass formulations explored. Yttrium-containing phases were found for the formulations containing 3 and 5 mol% Y2O3. Degradation analyses performed in Phosphate buffer saline (PBS) and Milli-Q water revealed significantly reduced rates with addition of Y2O3 content. This decrease was attributed to the formation of Y-O-P bonds where the octahedral structure of yttrium (YO6) cross-linked phosphate chains, subsequently leading to an increase in chemical durability of the glasses. The ion release studies also showed good correlation with the degradation profiles.","PeriodicalId":37354,"journal":{"name":"Biomedical Glasses","volume":"6 1","pages":"34 - 49"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/bglass-2020-0004","citationCount":"5","resultStr":"{\"title\":\"Yttrium doped phosphate-based glasses: structural and degradation analyses\",\"authors\":\"A. Arafat, Sabrin A. Samad, J. Titman, A. Lewis, E. Barney, I. Ahmed\",\"doi\":\"10.1515/bglass-2020-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This study investigates the role of yttrium in phosphate-based glasses in the system 45(P2O5)–25(CaO)– (30-x)(Na2O)–x(Y2O3) (0≤x≤5) prepared via melt quenching and focuses on their structural characterisation and degradation properties. The structural analyses were performed using a combination of solid-state nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). 31P NMR analysis showed that depolymerisation of the phosphate network occurred which increased with Y2O3 content as metaphosphate units (Q2) decreased with subsequent increase in pyrophosphate species (Q1). The NMR results correlated well with structural changes observed via FTIR and XPS analyses. XRD analysis of crystallised glass samples revealed the presence of calcium pyrophosphate (Ca2P2O7) and sodium metaphosphate (NaPO3) phases for all the glass formulations explored. Yttrium-containing phases were found for the formulations containing 3 and 5 mol% Y2O3. Degradation analyses performed in Phosphate buffer saline (PBS) and Milli-Q water revealed significantly reduced rates with addition of Y2O3 content. This decrease was attributed to the formation of Y-O-P bonds where the octahedral structure of yttrium (YO6) cross-linked phosphate chains, subsequently leading to an increase in chemical durability of the glasses. The ion release studies also showed good correlation with the degradation profiles.\",\"PeriodicalId\":37354,\"journal\":{\"name\":\"Biomedical Glasses\",\"volume\":\"6 1\",\"pages\":\"34 - 49\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/bglass-2020-0004\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Glasses\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/bglass-2020-0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Glasses","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bglass-2020-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
Yttrium doped phosphate-based glasses: structural and degradation analyses
Abstract This study investigates the role of yttrium in phosphate-based glasses in the system 45(P2O5)–25(CaO)– (30-x)(Na2O)–x(Y2O3) (0≤x≤5) prepared via melt quenching and focuses on their structural characterisation and degradation properties. The structural analyses were performed using a combination of solid-state nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). 31P NMR analysis showed that depolymerisation of the phosphate network occurred which increased with Y2O3 content as metaphosphate units (Q2) decreased with subsequent increase in pyrophosphate species (Q1). The NMR results correlated well with structural changes observed via FTIR and XPS analyses. XRD analysis of crystallised glass samples revealed the presence of calcium pyrophosphate (Ca2P2O7) and sodium metaphosphate (NaPO3) phases for all the glass formulations explored. Yttrium-containing phases were found for the formulations containing 3 and 5 mol% Y2O3. Degradation analyses performed in Phosphate buffer saline (PBS) and Milli-Q water revealed significantly reduced rates with addition of Y2O3 content. This decrease was attributed to the formation of Y-O-P bonds where the octahedral structure of yttrium (YO6) cross-linked phosphate chains, subsequently leading to an increase in chemical durability of the glasses. The ion release studies also showed good correlation with the degradation profiles.
期刊介绍:
Biomedical Glasses is an international Open Access-only journal covering the field of glasses for biomedical applications. The scope of the journal covers the science and technology of glasses and glass-based materials intended for applications in medicine and dentistry. It includes: Chemistry, physics, structure, design and characterization of biomedical glasses Surface science and interactions of biomedical glasses with aqueous and biological media Modeling structure and reactivity of biomedical glasses and their interfaces Biocompatibility of biomedical glasses Processing of biomedical glasses to achieve specific forms and functionality Biomedical glass coatings and composites In vitro and in vivo evaluation of biomedical glasses Glasses and glass-ceramics in engineered regeneration of tissues and organs Glass-based devices for medical and dental applications Application of glasses and glass-ceramics in healthcare.