{"title":"催化中的天然原料:通往有机转化的可持续途径","authors":"U. P. Patil, Suresh S. Patil","doi":"10.1007/s41061-021-00346-6","DOIUrl":null,"url":null,"abstract":"<div><p>Catalysts are the jewel in the crown of the chemical industry, accelerating reaction kinetics and augmenting the efficiency of desired reaction paths. Natural feedstock is a renewable resource capable of providing valuable functional products; in addition, it confers an opportunity to create catalysts. As an alternative to stoichiometric reagents, and as a part of a sustainable approach, the implications of using natural feedstocks as a source of new catalysts has attracted considerable interest. Natural feedstock-derived catalysts can promote chemical transformations more efficiently. Recent reports have highlighted the significant role of these biogenic, cost-effective, innocuous, biodegradable materials as catalysts in many biologically and pharmacologically important protocols. This review outlines the decisive organic transformations for which feedstock-derived catalysts have been employed effectively and successfully, along with their economic and environmental benefits over traditional catalytic systems.</p><h3>Graphic Abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":null,"pages":null},"PeriodicalIF":8.6000,"publicationDate":"2021-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41061-021-00346-6","citationCount":"2","resultStr":"{\"title\":\"Natural Feedstock in Catalysis: A Sustainable Route Towards Organic Transformations\",\"authors\":\"U. P. Patil, Suresh S. Patil\",\"doi\":\"10.1007/s41061-021-00346-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Catalysts are the jewel in the crown of the chemical industry, accelerating reaction kinetics and augmenting the efficiency of desired reaction paths. Natural feedstock is a renewable resource capable of providing valuable functional products; in addition, it confers an opportunity to create catalysts. As an alternative to stoichiometric reagents, and as a part of a sustainable approach, the implications of using natural feedstocks as a source of new catalysts has attracted considerable interest. Natural feedstock-derived catalysts can promote chemical transformations more efficiently. Recent reports have highlighted the significant role of these biogenic, cost-effective, innocuous, biodegradable materials as catalysts in many biologically and pharmacologically important protocols. This review outlines the decisive organic transformations for which feedstock-derived catalysts have been employed effectively and successfully, along with their economic and environmental benefits over traditional catalytic systems.</p><h3>Graphic Abstract</h3>\\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\\n </div>\",\"PeriodicalId\":802,\"journal\":{\"name\":\"Topics in Current Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2021-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s41061-021-00346-6\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topics in Current Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41061-021-00346-6\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Current Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s41061-021-00346-6","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemistry","Score":null,"Total":0}
Natural Feedstock in Catalysis: A Sustainable Route Towards Organic Transformations
Catalysts are the jewel in the crown of the chemical industry, accelerating reaction kinetics and augmenting the efficiency of desired reaction paths. Natural feedstock is a renewable resource capable of providing valuable functional products; in addition, it confers an opportunity to create catalysts. As an alternative to stoichiometric reagents, and as a part of a sustainable approach, the implications of using natural feedstocks as a source of new catalysts has attracted considerable interest. Natural feedstock-derived catalysts can promote chemical transformations more efficiently. Recent reports have highlighted the significant role of these biogenic, cost-effective, innocuous, biodegradable materials as catalysts in many biologically and pharmacologically important protocols. This review outlines the decisive organic transformations for which feedstock-derived catalysts have been employed effectively and successfully, along with their economic and environmental benefits over traditional catalytic systems.
期刊介绍:
Topics in Current Chemistry provides in-depth analyses and forward-thinking perspectives on the latest advancements in chemical research. This renowned journal encompasses various domains within chemical science and their intersections with biology, medicine, physics, and materials science.
Each collection within the journal aims to offer a comprehensive understanding, accessible to both academic and industrial readers, of emerging research in an area that captivates a broader scientific community.
In essence, Topics in Current Chemistry illuminates cutting-edge chemical research, fosters interdisciplinary collaboration, and facilitates knowledge-sharing among diverse scientific audiences.