银和铜纳米粒子:低浓度控制其盐前体的热分解

IF 1 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Digest Journal of Nanomaterials and Biostructures Pub Date : 2023-07-02 DOI:10.15251/djnb.2023.182.773
D. S. More, M. Moloto
{"title":"银和铜纳米粒子:低浓度控制其盐前体的热分解","authors":"D. S. More, M. Moloto","doi":"10.15251/djnb.2023.182.773","DOIUrl":null,"url":null,"abstract":"Generally, salt precursors have been investigated for the production of nanoparticles with semiconducting properties such as metal chalcogenides and others. They have demonstrated excellent features for the ease of converting them to nanoparticles. Thermal decomposition and solvothermal processes are often followed to produce particles with stabilizers of varied ranges of size with improved size control dependent on the set collective conditions and the intended applications. In this study, silver (Ag) and copper (Cu) nanoparticles were synthesized using the thermal decomposition method in the presence of oleylamine as a capping agent in order to produce good stable uniform monodispersed nanoparticles. Lower amounts of Ag and Cu precursors (0.1 - 0.2 g) were used to study their effect on the size and morphology of the nanoparticles. The synthesized nanoparticles under various conditions were characterized using UV/Vis and PL spectroscopy, TEM, and XRD. It was observed that an increase in the precursor concentration led to an increase in particle size with varying morphologies for both Ag and Cu nanoparticles. The TEM images of Ag nanoparticles showed that uniform morphology and spherical shape were observed with narrow diameters ranging from 5.9 to 6.8 nm. However, for Cu nanoparticles, uniform morphology and spherical shape were only observed at a precursor concentration of 0.15 g with an average diameter of 7.8 nm. The XRD results of both Ag and Cu nanoparticles showed peaks that were identified as Ag and Cu in the face-centred cubic.","PeriodicalId":11233,"journal":{"name":"Digest Journal of Nanomaterials and Biostructures","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Silver and copper nanoparticles: Lower concentration controlled thermal decomposition of their salt precursors\",\"authors\":\"D. S. More, M. Moloto\",\"doi\":\"10.15251/djnb.2023.182.773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generally, salt precursors have been investigated for the production of nanoparticles with semiconducting properties such as metal chalcogenides and others. They have demonstrated excellent features for the ease of converting them to nanoparticles. Thermal decomposition and solvothermal processes are often followed to produce particles with stabilizers of varied ranges of size with improved size control dependent on the set collective conditions and the intended applications. In this study, silver (Ag) and copper (Cu) nanoparticles were synthesized using the thermal decomposition method in the presence of oleylamine as a capping agent in order to produce good stable uniform monodispersed nanoparticles. Lower amounts of Ag and Cu precursors (0.1 - 0.2 g) were used to study their effect on the size and morphology of the nanoparticles. The synthesized nanoparticles under various conditions were characterized using UV/Vis and PL spectroscopy, TEM, and XRD. It was observed that an increase in the precursor concentration led to an increase in particle size with varying morphologies for both Ag and Cu nanoparticles. The TEM images of Ag nanoparticles showed that uniform morphology and spherical shape were observed with narrow diameters ranging from 5.9 to 6.8 nm. However, for Cu nanoparticles, uniform morphology and spherical shape were only observed at a precursor concentration of 0.15 g with an average diameter of 7.8 nm. The XRD results of both Ag and Cu nanoparticles showed peaks that were identified as Ag and Cu in the face-centred cubic.\",\"PeriodicalId\":11233,\"journal\":{\"name\":\"Digest Journal of Nanomaterials and Biostructures\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digest Journal of Nanomaterials and Biostructures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.15251/djnb.2023.182.773\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digest Journal of Nanomaterials and Biostructures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.15251/djnb.2023.182.773","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通常,已经研究了盐前体用于生产具有半导体性质的纳米颗粒,例如金属硫族化物和其他。它们已经证明了易于将其转化为纳米颗粒的优异特性。通常遵循热分解和溶剂热工艺来生产具有不同尺寸范围的稳定剂的颗粒,并根据设定的集体条件和预期应用改进尺寸控制。在本研究中,在油胺作为封端剂的存在下,采用热分解法合成了银(Ag)和铜(Cu)纳米颗粒,以制备稳定、均匀的单分散纳米颗粒。使用较低量的Ag和Cu前体(0.1-0.2g)来研究它们对纳米颗粒的尺寸和形态的影响。利用紫外/可见光谱、PL光谱、TEM和XRD对在不同条件下合成的纳米颗粒进行了表征。观察到,前体浓度的增加导致Ag和Cu纳米颗粒的颗粒尺寸的增加,并且具有不同的形态。Ag纳米粒子的TEM图像显示,在5.9至6.8nm的窄直径范围内观察到均匀的形貌和球形。然而,对于Cu纳米颗粒,仅在0.15g的前体浓度下观察到均匀的形态和球形,平均直径为7.8nm。Ag和Cu纳米颗粒的XRD结果都显示出在面心立方中被鉴定为Ag和铜的峰。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Silver and copper nanoparticles: Lower concentration controlled thermal decomposition of their salt precursors
Generally, salt precursors have been investigated for the production of nanoparticles with semiconducting properties such as metal chalcogenides and others. They have demonstrated excellent features for the ease of converting them to nanoparticles. Thermal decomposition and solvothermal processes are often followed to produce particles with stabilizers of varied ranges of size with improved size control dependent on the set collective conditions and the intended applications. In this study, silver (Ag) and copper (Cu) nanoparticles were synthesized using the thermal decomposition method in the presence of oleylamine as a capping agent in order to produce good stable uniform monodispersed nanoparticles. Lower amounts of Ag and Cu precursors (0.1 - 0.2 g) were used to study their effect on the size and morphology of the nanoparticles. The synthesized nanoparticles under various conditions were characterized using UV/Vis and PL spectroscopy, TEM, and XRD. It was observed that an increase in the precursor concentration led to an increase in particle size with varying morphologies for both Ag and Cu nanoparticles. The TEM images of Ag nanoparticles showed that uniform morphology and spherical shape were observed with narrow diameters ranging from 5.9 to 6.8 nm. However, for Cu nanoparticles, uniform morphology and spherical shape were only observed at a precursor concentration of 0.15 g with an average diameter of 7.8 nm. The XRD results of both Ag and Cu nanoparticles showed peaks that were identified as Ag and Cu in the face-centred cubic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Digest Journal of Nanomaterials and Biostructures
Digest Journal of Nanomaterials and Biostructures 工程技术-材料科学:综合
CiteScore
1.50
自引率
22.20%
发文量
116
审稿时长
4.3 months
期刊介绍: Under the aegis of the Academy of Romanian Scientists Edited by: -Virtual Institute of Physics operated by Virtual Company of Physics.
期刊最新文献
Investigation of crystal structural and magnetic properties of titanium doped Pr0.67Ba0.33MnO3 perovskite manganites Preparation and properties of PTFE@TiO2/epoxy superhydrophobic coating Room temperature detection of sulfur dioxide using functionalized carbon nanotubes Characterizations of sprayed TiO2 and Cu doped TiO2 thin films prepared by spray pyrolysis method Synthesis and characterization of Fe-substituting BaO nanoparticles by sol-gel method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1