{"title":"再生催化剂催化废旧聚酯塑料的快速化学回收","authors":"Yu-Ji Luo, Jia-Yin Sun, Zhi Li","doi":"10.1016/j.gce.2023.06.002","DOIUrl":null,"url":null,"abstract":"<div><p>Waste plastics are serious environmental threats due to their low degradability and low recycling rate. Rapid and efficient waste plastics recycling technologies are urgently demanded for a sustainable future. Herein, we report a rapid, closed-loop, and streamlined process to convert polyesters such as poly(ethylene terephthalate) (PET) back to its purified monomers. Using trifluoromethanesulfonic acid or metal triflates as the recyclable catalyst, polyesters such as PET can be completely depolymerized by simple carboxylic acids within 1 h. By coupling this acidolysis with a subsequent hydrogenolysis process, the consumed carboxylic acid was recovered and the closed-loop of PET depolymerization could be established. All catalysts and depolymerization agents are fully recycled while only PET and hydrogen are consumed.</p></div>","PeriodicalId":66474,"journal":{"name":"Green Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":9.1000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666952823000341/pdfft?md5=9a827a034877fb9c2f2091c32d0a1146&pid=1-s2.0-S2666952823000341-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Rapid chemical recycling of waste polyester plastics catalyzed by recyclable catalyst\",\"authors\":\"Yu-Ji Luo, Jia-Yin Sun, Zhi Li\",\"doi\":\"10.1016/j.gce.2023.06.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Waste plastics are serious environmental threats due to their low degradability and low recycling rate. Rapid and efficient waste plastics recycling technologies are urgently demanded for a sustainable future. Herein, we report a rapid, closed-loop, and streamlined process to convert polyesters such as poly(ethylene terephthalate) (PET) back to its purified monomers. Using trifluoromethanesulfonic acid or metal triflates as the recyclable catalyst, polyesters such as PET can be completely depolymerized by simple carboxylic acids within 1 h. By coupling this acidolysis with a subsequent hydrogenolysis process, the consumed carboxylic acid was recovered and the closed-loop of PET depolymerization could be established. All catalysts and depolymerization agents are fully recycled while only PET and hydrogen are consumed.</p></div>\",\"PeriodicalId\":66474,\"journal\":{\"name\":\"Green Chemical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2023-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666952823000341/pdfft?md5=9a827a034877fb9c2f2091c32d0a1146&pid=1-s2.0-S2666952823000341-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Chemical Engineering\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666952823000341\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemical Engineering","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666952823000341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
摘要
废塑料降解性差、回收率低,严重威胁环境。为了实现可持续发展的未来,迫切需要快速高效的废塑料回收技术。在此,我们报告了一种快速、闭环、简化的工艺,可将聚酯(如聚对苯二甲酸乙二酯(PET))转化回其纯化单体。使用三氟甲磺酸或金属三氟化物作为可回收催化剂,PET 等聚酯可在 1 小时内被简单的羧酸完全解聚。所有催化剂和解聚剂都可以完全回收利用,而消耗的只是 PET 和氢气。
Rapid chemical recycling of waste polyester plastics catalyzed by recyclable catalyst
Waste plastics are serious environmental threats due to their low degradability and low recycling rate. Rapid and efficient waste plastics recycling technologies are urgently demanded for a sustainable future. Herein, we report a rapid, closed-loop, and streamlined process to convert polyesters such as poly(ethylene terephthalate) (PET) back to its purified monomers. Using trifluoromethanesulfonic acid or metal triflates as the recyclable catalyst, polyesters such as PET can be completely depolymerized by simple carboxylic acids within 1 h. By coupling this acidolysis with a subsequent hydrogenolysis process, the consumed carboxylic acid was recovered and the closed-loop of PET depolymerization could be established. All catalysts and depolymerization agents are fully recycled while only PET and hydrogen are consumed.