Xian-Kui Zhu, B. Wiersma, William R. Johnson, R. Sindelar
{"title":"薄壁和厚壁圆柱形容器的破裂压力解决方案","authors":"Xian-Kui Zhu, B. Wiersma, William R. Johnson, R. Sindelar","doi":"10.1115/1.4062334","DOIUrl":null,"url":null,"abstract":"\n Pressure vessels (PVs) are widely used in the energy industry. Accurate burst pressure is critical to structural design and safe operation for both thin and thick-walled PVs. The traditional strength theories utilized a single-parameter material property, such as the yield strength (YS) or the ultimate tensile strength (UTS) to develop failure models for determining the yield or ultimate pressure carrying capacity in the PV design. The UTS-based Barlow formula is a typical burst pressure model developed from the Tresca strength theory that provides the basis for developing regulation rules and failure models for different industry design codes, such as ASME BPVC, ASME B31.3, and ASME B31G, among others. In order to reduce the conservatism of the Tresca strength model, ASME BPVC recently adapted failure models developed from the von Mises strength theory for the PV design and analysis. It has been commonly accepted that the burst pressure of pipelines depends on the UTS and strain hardening exponent, n, of the pipeline steels. An average shear stress yield theory was thus developed, and the Zhu-Leis solution of burst pressure was obtained as a function of UTS and n for thin-walled line pipes. Experiments showed that the Zhu-Leis solution provides an accurate, reliable prediction of burst pressure for defect-free thin-walled pipes. In order to extend the Zhu-Leis solution to thick-walled cylindrical PVs, this paper defined three new flow stresses, modified the traditional strength theories, and obtained three new burst pressure solutions that are valid for both thin and thick-walled cylindrical vessels. The proposed flow stresses are able to describe the tensile strength and the plastic flow response of PVs for a strain hardening steel. The associated strength theories were then developed in terms of the Tresca, von Mises and Zhu-Leis yield criteria. From these new strength theories, three burst pressure solutions were obtained for thick-walled cylinders, where the von Mises solution is an upper bound prediction, the Tresca solution is a lower bound prediction, and the Zhu-Leis solution is an intermediate prediction of burst pressure for thick-walled cylinders. Finally, the proposed burst pressure solutions were evaluated and validated by two large datasets of full-scale burst tests for thick-walled tubes and for thin-walled pipes.","PeriodicalId":50080,"journal":{"name":"Journal of Pressure Vessel Technology-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Burst Pressure Solutions of Thin and Thick-Walled Cylindrical Vessels\",\"authors\":\"Xian-Kui Zhu, B. Wiersma, William R. Johnson, R. Sindelar\",\"doi\":\"10.1115/1.4062334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Pressure vessels (PVs) are widely used in the energy industry. Accurate burst pressure is critical to structural design and safe operation for both thin and thick-walled PVs. The traditional strength theories utilized a single-parameter material property, such as the yield strength (YS) or the ultimate tensile strength (UTS) to develop failure models for determining the yield or ultimate pressure carrying capacity in the PV design. The UTS-based Barlow formula is a typical burst pressure model developed from the Tresca strength theory that provides the basis for developing regulation rules and failure models for different industry design codes, such as ASME BPVC, ASME B31.3, and ASME B31G, among others. In order to reduce the conservatism of the Tresca strength model, ASME BPVC recently adapted failure models developed from the von Mises strength theory for the PV design and analysis. It has been commonly accepted that the burst pressure of pipelines depends on the UTS and strain hardening exponent, n, of the pipeline steels. An average shear stress yield theory was thus developed, and the Zhu-Leis solution of burst pressure was obtained as a function of UTS and n for thin-walled line pipes. Experiments showed that the Zhu-Leis solution provides an accurate, reliable prediction of burst pressure for defect-free thin-walled pipes. In order to extend the Zhu-Leis solution to thick-walled cylindrical PVs, this paper defined three new flow stresses, modified the traditional strength theories, and obtained three new burst pressure solutions that are valid for both thin and thick-walled cylindrical vessels. The proposed flow stresses are able to describe the tensile strength and the plastic flow response of PVs for a strain hardening steel. The associated strength theories were then developed in terms of the Tresca, von Mises and Zhu-Leis yield criteria. From these new strength theories, three burst pressure solutions were obtained for thick-walled cylinders, where the von Mises solution is an upper bound prediction, the Tresca solution is a lower bound prediction, and the Zhu-Leis solution is an intermediate prediction of burst pressure for thick-walled cylinders. Finally, the proposed burst pressure solutions were evaluated and validated by two large datasets of full-scale burst tests for thick-walled tubes and for thin-walled pipes.\",\"PeriodicalId\":50080,\"journal\":{\"name\":\"Journal of Pressure Vessel Technology-Transactions of the Asme\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pressure Vessel Technology-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062334\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pressure Vessel Technology-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062334","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Burst Pressure Solutions of Thin and Thick-Walled Cylindrical Vessels
Pressure vessels (PVs) are widely used in the energy industry. Accurate burst pressure is critical to structural design and safe operation for both thin and thick-walled PVs. The traditional strength theories utilized a single-parameter material property, such as the yield strength (YS) or the ultimate tensile strength (UTS) to develop failure models for determining the yield or ultimate pressure carrying capacity in the PV design. The UTS-based Barlow formula is a typical burst pressure model developed from the Tresca strength theory that provides the basis for developing regulation rules and failure models for different industry design codes, such as ASME BPVC, ASME B31.3, and ASME B31G, among others. In order to reduce the conservatism of the Tresca strength model, ASME BPVC recently adapted failure models developed from the von Mises strength theory for the PV design and analysis. It has been commonly accepted that the burst pressure of pipelines depends on the UTS and strain hardening exponent, n, of the pipeline steels. An average shear stress yield theory was thus developed, and the Zhu-Leis solution of burst pressure was obtained as a function of UTS and n for thin-walled line pipes. Experiments showed that the Zhu-Leis solution provides an accurate, reliable prediction of burst pressure for defect-free thin-walled pipes. In order to extend the Zhu-Leis solution to thick-walled cylindrical PVs, this paper defined three new flow stresses, modified the traditional strength theories, and obtained three new burst pressure solutions that are valid for both thin and thick-walled cylindrical vessels. The proposed flow stresses are able to describe the tensile strength and the plastic flow response of PVs for a strain hardening steel. The associated strength theories were then developed in terms of the Tresca, von Mises and Zhu-Leis yield criteria. From these new strength theories, three burst pressure solutions were obtained for thick-walled cylinders, where the von Mises solution is an upper bound prediction, the Tresca solution is a lower bound prediction, and the Zhu-Leis solution is an intermediate prediction of burst pressure for thick-walled cylinders. Finally, the proposed burst pressure solutions were evaluated and validated by two large datasets of full-scale burst tests for thick-walled tubes and for thin-walled pipes.
期刊介绍:
The Journal of Pressure Vessel Technology is the premier publication for the highest-quality research and interpretive reports on the design, analysis, materials, fabrication, construction, inspection, operation, and failure prevention of pressure vessels, piping, pipelines, power and heating boilers, heat exchangers, reaction vessels, pumps, valves, and other pressure and temperature-bearing components, as well as the nondestructive evaluation of critical components in mechanical engineering applications. Not only does the Journal cover all topics dealing with the design and analysis of pressure vessels, piping, and components, but it also contains discussions of their related codes and standards.
Applicable pressure technology areas of interest include: Dynamic and seismic analysis; Equipment qualification; Fabrication; Welding processes and integrity; Operation of vessels and piping; Fatigue and fracture prediction; Finite and boundary element methods; Fluid-structure interaction; High pressure engineering; Elevated temperature analysis and design; Inelastic analysis; Life extension; Lifeline earthquake engineering; PVP materials and their property databases; NDE; safety and reliability; Verification and qualification of software.