{"title":"使用玻璃相和粘土分离激光烧蚀电感耦合等离子体质谱法评估Dinaride湖系统流纹岩-火山灰岩蚀变过程中的微量元素迁移率","authors":"L. Badurina, B. Šegvić","doi":"10.1180/clm.2022.12","DOIUrl":null,"url":null,"abstract":"Abstract This paper reports a novel approach in the study of trace-element mobility during the argillization of volcanic glass that is based on in situ laser ablation inductively coupled plasma mass spectrometry glass analyses and that of spatially related illite-smectite collected in the form of fraction separates. The material studied originates from lacustrine sediments of the Dinaride Lake System that bear evidence of intensive weathering of distal tephra during the Miocene climatic optimum. Yttrium and HREE were probably mobilized from decomposing glass in the form of carbonate complexes and were consequently depleted significantly in the clays studied. On the other hand, the Mg-rich illite-smectite demonstrates an elevated adsorption potential of solvated LREE complexes. This may be explained through clay surface geochemistry controlled largely by Mg for Al octahedral substitution. This paper highlights the role of eogenetic 2:1 clay aluminosilicates that, under favourable geological conditions, may be conducive to secondary REE enrichment and the formation of potential ion adsorption-type deposits.","PeriodicalId":10311,"journal":{"name":"Clay Minerals","volume":"57 1","pages":"1 - 6"},"PeriodicalIF":1.1000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Assessing trace-element mobility during alteration of rhyolite tephra from the Dinaride Lake System using glass-phase and clay-separate laser ablation inductively coupled plasma mass spectrometry\",\"authors\":\"L. Badurina, B. Šegvić\",\"doi\":\"10.1180/clm.2022.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper reports a novel approach in the study of trace-element mobility during the argillization of volcanic glass that is based on in situ laser ablation inductively coupled plasma mass spectrometry glass analyses and that of spatially related illite-smectite collected in the form of fraction separates. The material studied originates from lacustrine sediments of the Dinaride Lake System that bear evidence of intensive weathering of distal tephra during the Miocene climatic optimum. Yttrium and HREE were probably mobilized from decomposing glass in the form of carbonate complexes and were consequently depleted significantly in the clays studied. On the other hand, the Mg-rich illite-smectite demonstrates an elevated adsorption potential of solvated LREE complexes. This may be explained through clay surface geochemistry controlled largely by Mg for Al octahedral substitution. This paper highlights the role of eogenetic 2:1 clay aluminosilicates that, under favourable geological conditions, may be conducive to secondary REE enrichment and the formation of potential ion adsorption-type deposits.\",\"PeriodicalId\":10311,\"journal\":{\"name\":\"Clay Minerals\",\"volume\":\"57 1\",\"pages\":\"1 - 6\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clay Minerals\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1180/clm.2022.12\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clay Minerals","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1180/clm.2022.12","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Assessing trace-element mobility during alteration of rhyolite tephra from the Dinaride Lake System using glass-phase and clay-separate laser ablation inductively coupled plasma mass spectrometry
Abstract This paper reports a novel approach in the study of trace-element mobility during the argillization of volcanic glass that is based on in situ laser ablation inductively coupled plasma mass spectrometry glass analyses and that of spatially related illite-smectite collected in the form of fraction separates. The material studied originates from lacustrine sediments of the Dinaride Lake System that bear evidence of intensive weathering of distal tephra during the Miocene climatic optimum. Yttrium and HREE were probably mobilized from decomposing glass in the form of carbonate complexes and were consequently depleted significantly in the clays studied. On the other hand, the Mg-rich illite-smectite demonstrates an elevated adsorption potential of solvated LREE complexes. This may be explained through clay surface geochemistry controlled largely by Mg for Al octahedral substitution. This paper highlights the role of eogenetic 2:1 clay aluminosilicates that, under favourable geological conditions, may be conducive to secondary REE enrichment and the formation of potential ion adsorption-type deposits.
期刊介绍:
Clay Minerals is an international journal of mineral sciences, published four times a year, including research papers about clays, clay minerals and related materials, natural or synthetic. The journal includes papers on Earth processes soil science, geology/mineralogy, chemistry/material science, colloid/surface science, applied science and technology and health/ environment topics. The journal has an international editorial board with members from fifteen countries.