{"title":"温度和密度扰动对大气动力学的计算研究","authors":"A. Abawari, Yitagesu Elfaged","doi":"10.1088/2399-6528/acaa89","DOIUrl":null,"url":null,"abstract":"This study examines the perturbation effect of temperature and density of moist air on atmospheric variables at 9°1’48″N, 38°44’24″E and 6.324 km above the Earth’s surface. The atmosphere is a compressible neutral moist air flowing on a rotating Earth as a model and it’s basic atmospheric parameters such as gas constant, transport coefficients, mixing ratio and specific heat capacities are considered to be temperature dependent and the Earth’s gravity changes with latitude and altitude. To describe the dynamics, we carried out a numerical computation using finite difference method on an unstaggered grid. Our results revealed that the response of all the variables have a plane wave pattern, in which specific heat capacities (SHCs), resultant wind speed (RWS) and water vapor mixing ratio (MR) increase with time at each latitude but vertical wind speed (VWS), specific enthalpy (SE) and pressure decrease with time at each latitude. The increase of MR with time is the result of water vapor flux into the air parcel and the decrease of SE and increase of RWS with time is the result of thermal energy to mechanical energy transformation. The decrease of VWS with time is the effect of the viscous force due to temperature dependence of viscosity.","PeriodicalId":47089,"journal":{"name":"Journal of Physics Communications","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational study of temperature and density perturbations on atmospheric dynamics\",\"authors\":\"A. Abawari, Yitagesu Elfaged\",\"doi\":\"10.1088/2399-6528/acaa89\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study examines the perturbation effect of temperature and density of moist air on atmospheric variables at 9°1’48″N, 38°44’24″E and 6.324 km above the Earth’s surface. The atmosphere is a compressible neutral moist air flowing on a rotating Earth as a model and it’s basic atmospheric parameters such as gas constant, transport coefficients, mixing ratio and specific heat capacities are considered to be temperature dependent and the Earth’s gravity changes with latitude and altitude. To describe the dynamics, we carried out a numerical computation using finite difference method on an unstaggered grid. Our results revealed that the response of all the variables have a plane wave pattern, in which specific heat capacities (SHCs), resultant wind speed (RWS) and water vapor mixing ratio (MR) increase with time at each latitude but vertical wind speed (VWS), specific enthalpy (SE) and pressure decrease with time at each latitude. The increase of MR with time is the result of water vapor flux into the air parcel and the decrease of SE and increase of RWS with time is the result of thermal energy to mechanical energy transformation. The decrease of VWS with time is the effect of the viscous force due to temperature dependence of viscosity.\",\"PeriodicalId\":47089,\"journal\":{\"name\":\"Journal of Physics Communications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2399-6528/acaa89\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2399-6528/acaa89","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Computational study of temperature and density perturbations on atmospheric dynamics
This study examines the perturbation effect of temperature and density of moist air on atmospheric variables at 9°1’48″N, 38°44’24″E and 6.324 km above the Earth’s surface. The atmosphere is a compressible neutral moist air flowing on a rotating Earth as a model and it’s basic atmospheric parameters such as gas constant, transport coefficients, mixing ratio and specific heat capacities are considered to be temperature dependent and the Earth’s gravity changes with latitude and altitude. To describe the dynamics, we carried out a numerical computation using finite difference method on an unstaggered grid. Our results revealed that the response of all the variables have a plane wave pattern, in which specific heat capacities (SHCs), resultant wind speed (RWS) and water vapor mixing ratio (MR) increase with time at each latitude but vertical wind speed (VWS), specific enthalpy (SE) and pressure decrease with time at each latitude. The increase of MR with time is the result of water vapor flux into the air parcel and the decrease of SE and increase of RWS with time is the result of thermal energy to mechanical energy transformation. The decrease of VWS with time is the effect of the viscous force due to temperature dependence of viscosity.