{"title":"用改性超滤膜逐层分离蛋白质和乳糖","authors":"N. Dizge, Z. Bilici, B. Keskinler","doi":"10.22079/JMSR.2019.114560.1291","DOIUrl":null,"url":null,"abstract":"Layer-by-Layer (LbL) is a method which can be used for nanoscale coating and surface functionalization of a material. LbL technique mainly uses the electrostatic attracting between charged materials (polyelectrolytes, nanoparticles, etc.) and an oppositely charged surface. In this study, protein separation (BSA) from lactose solution was carried out using the LbL self-assembly method, which was used to produce a polyelectrolyte (PE) nanofiltration membrane. The impact of number of dual layers of PE and pH of solution on the retention of BSA and lactose was systematically investigated. For separation experiments, the BSA and lactose were used as a model protein and disaccharide sugars, respectively. Maximum retentions of 10.7% lactose and 100% BSA were achieved by the PE nanofiltration membrane with six bilayers at pH 6.5. Moreover, whey was used for the real filtration application, and the retention of fat, protein, and lactose were 100%, 98%, and 15%, respectively. The results showed that the separation of protein and lactose from the mixed solution could be achieved by PE nanofiltration membrane using the LbL method.","PeriodicalId":16427,"journal":{"name":"Journal of Membrane Science and Research","volume":"6 1","pages":"211-217"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Protein and Lactose Separation by Modified Ultrafiltration Membrane using Layer by Layer Technique\",\"authors\":\"N. Dizge, Z. Bilici, B. Keskinler\",\"doi\":\"10.22079/JMSR.2019.114560.1291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Layer-by-Layer (LbL) is a method which can be used for nanoscale coating and surface functionalization of a material. LbL technique mainly uses the electrostatic attracting between charged materials (polyelectrolytes, nanoparticles, etc.) and an oppositely charged surface. In this study, protein separation (BSA) from lactose solution was carried out using the LbL self-assembly method, which was used to produce a polyelectrolyte (PE) nanofiltration membrane. The impact of number of dual layers of PE and pH of solution on the retention of BSA and lactose was systematically investigated. For separation experiments, the BSA and lactose were used as a model protein and disaccharide sugars, respectively. Maximum retentions of 10.7% lactose and 100% BSA were achieved by the PE nanofiltration membrane with six bilayers at pH 6.5. Moreover, whey was used for the real filtration application, and the retention of fat, protein, and lactose were 100%, 98%, and 15%, respectively. The results showed that the separation of protein and lactose from the mixed solution could be achieved by PE nanofiltration membrane using the LbL method.\",\"PeriodicalId\":16427,\"journal\":{\"name\":\"Journal of Membrane Science and Research\",\"volume\":\"6 1\",\"pages\":\"211-217\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Membrane Science and Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22079/JMSR.2019.114560.1291\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science and Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22079/JMSR.2019.114560.1291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
Protein and Lactose Separation by Modified Ultrafiltration Membrane using Layer by Layer Technique
Layer-by-Layer (LbL) is a method which can be used for nanoscale coating and surface functionalization of a material. LbL technique mainly uses the electrostatic attracting between charged materials (polyelectrolytes, nanoparticles, etc.) and an oppositely charged surface. In this study, protein separation (BSA) from lactose solution was carried out using the LbL self-assembly method, which was used to produce a polyelectrolyte (PE) nanofiltration membrane. The impact of number of dual layers of PE and pH of solution on the retention of BSA and lactose was systematically investigated. For separation experiments, the BSA and lactose were used as a model protein and disaccharide sugars, respectively. Maximum retentions of 10.7% lactose and 100% BSA were achieved by the PE nanofiltration membrane with six bilayers at pH 6.5. Moreover, whey was used for the real filtration application, and the retention of fat, protein, and lactose were 100%, 98%, and 15%, respectively. The results showed that the separation of protein and lactose from the mixed solution could be achieved by PE nanofiltration membrane using the LbL method.
期刊介绍:
The Journal of Membrane Science and Research (JMSR) is an Open Access journal with Free of Charge publication policy, which provides a focal point for academic and industrial chemical and polymer engineers, chemists, materials scientists, and membranologists working on both membranes and membrane processes, particularly for four major sectors, including Energy, Water, Environment and Food. The journal publishes original research and reviews on membranes (organic, inorganic, liquid and etc.) and membrane processes (MF, UF, NF, RO, ED, Dialysis, MD, PV, CDI, FO, GP, VP and etc.), membrane formation/structure/performance, fouling, module/process design, and processes/applications in various areas. Primary emphasis is on structure, function, and performance of essentially non-biological membranes.