{"title":"地面效应对垂直起降狭缝式分布式推进系统机翼气动特性的影响","authors":"Cheng'an Bai, Chao Zhou","doi":"10.1515/tjj-2022-0065","DOIUrl":null,"url":null,"abstract":"Abstract During take-off of a vertical take-off and landing (VTOL) aircraft, ground effects can cause a downward force on the aircraft body and wings. The downward force could substantially reduce the payload of the aircraft, which is undesirable. This paper investigates the ground effects related to VTOL applications with distributed propulsion. A slot jet is used to simulate the distributed propulsion system. A model of a wing with a slot jet placed near the trailing edge of the wing is investigated. The slot jet is almost perpendicular to the ground to provide a vertical thrust. Experimental and numerical methods are used to investigate the aerodynamic performance of this model. Theoretical analysis is carried out to understand the formation mechanism of the low pressure region on the lower surface of the wing, which causes the downward force. The flow physics of the jet inducing ground vortex is investigated. It is found that the convection term in the ground vortex area is the main source of the pressure reduction. Based on the flow mechanism, a redesigned configuration is proposed to reduce the negative effect of the ground vortex. The flow structures such as the tip vortex are also investigated.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ground effects on the aerodynamics of a wing with slot type distributed propulsion system for VTOL applications\",\"authors\":\"Cheng'an Bai, Chao Zhou\",\"doi\":\"10.1515/tjj-2022-0065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract During take-off of a vertical take-off and landing (VTOL) aircraft, ground effects can cause a downward force on the aircraft body and wings. The downward force could substantially reduce the payload of the aircraft, which is undesirable. This paper investigates the ground effects related to VTOL applications with distributed propulsion. A slot jet is used to simulate the distributed propulsion system. A model of a wing with a slot jet placed near the trailing edge of the wing is investigated. The slot jet is almost perpendicular to the ground to provide a vertical thrust. Experimental and numerical methods are used to investigate the aerodynamic performance of this model. Theoretical analysis is carried out to understand the formation mechanism of the low pressure region on the lower surface of the wing, which causes the downward force. The flow physics of the jet inducing ground vortex is investigated. It is found that the convection term in the ground vortex area is the main source of the pressure reduction. Based on the flow mechanism, a redesigned configuration is proposed to reduce the negative effect of the ground vortex. The flow structures such as the tip vortex are also investigated.\",\"PeriodicalId\":50284,\"journal\":{\"name\":\"International Journal of Turbo & Jet-Engines\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Turbo & Jet-Engines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/tjj-2022-0065\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Turbo & Jet-Engines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/tjj-2022-0065","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Ground effects on the aerodynamics of a wing with slot type distributed propulsion system for VTOL applications
Abstract During take-off of a vertical take-off and landing (VTOL) aircraft, ground effects can cause a downward force on the aircraft body and wings. The downward force could substantially reduce the payload of the aircraft, which is undesirable. This paper investigates the ground effects related to VTOL applications with distributed propulsion. A slot jet is used to simulate the distributed propulsion system. A model of a wing with a slot jet placed near the trailing edge of the wing is investigated. The slot jet is almost perpendicular to the ground to provide a vertical thrust. Experimental and numerical methods are used to investigate the aerodynamic performance of this model. Theoretical analysis is carried out to understand the formation mechanism of the low pressure region on the lower surface of the wing, which causes the downward force. The flow physics of the jet inducing ground vortex is investigated. It is found that the convection term in the ground vortex area is the main source of the pressure reduction. Based on the flow mechanism, a redesigned configuration is proposed to reduce the negative effect of the ground vortex. The flow structures such as the tip vortex are also investigated.
期刊介绍:
The Main aim and scope of this Journal is to help improve each separate components R&D and superimpose separated results to get integrated systems by striving to reach the overall advanced design and benefits by integrating: (a) Physics, Aero, and Stealth Thermodynamics in simulations by flying unmanned or manned prototypes supported by integrated Computer Simulations based on: (b) Component R&D of: (i) Turbo and Jet-Engines, (ii) Airframe, (iii) Helmet-Aiming-Systems and Ammunition based on: (c) Anticipated New Programs Missions based on (d) IMPROVED RELIABILITY, DURABILITY, ECONOMICS, TACTICS, STRATEGIES and EDUCATION in both the civil and military domains of Turbo and Jet Engines.
The International Journal of Turbo & Jet Engines is devoted to cutting edge research in theory and design of propagation of jet aircraft. It serves as an international publication organ for new ideas, insights and results from industry and academic research on thermodynamics, combustion, behavior of related materials at high temperatures, turbine and engine design, thrust vectoring and flight control as well as energy and environmental issues.