{"title":"光聚合对液晶混合物渗透光子晶体光纤传输特性的影响","authors":"Marta Kajkowska, M. Chychłowski, P. Lesiak","doi":"10.4302/plp.v14i3.1166","DOIUrl":null,"url":null,"abstract":"In this paper we analyze the influence of the photopolymerization process on propagation properties of photonic crystal fiber infiltrated with liquid crystal doped with a mixture of reactive monomer and photoinitiator. The obtained results showed changes in photonic band gap of the fiber due to refractive index change of the liquid crystal mixture caused by the polymerization process. Moreover, the research demonstrated the possibility of preserving the desired molecular orientation of liquid crystal initially stabilized by placing the sample in the external electric field. This was achieved by simultaneously irradiating the sample and controlling the orientation of liquid crystal molecules with the electric field. The spectral analysis of the polymerized sample showed no visible difference in propagation spectra when the electric field was turned off after the process was finished. Full Text: PDF ReferencesK. Yin et al., \"Advanced liquid crystal devices for augmented reality and virtual reality displays: principles and applications\", Light Sci Appl. 11, 161 (2022). CrossRef S. Singh, \"Phase transitions in liquid crystals\", Phys. Rep. 324, 107 (2000). CrossRef N. Tarjányi, M. Veveričík, D. Káčik, M. Timko, P. Kopčanský, \"Birefringence dispersion of 6CHBT liquid crystal determined in VIS-NIR spectral range\", Appl. Surf. Sci. 542, 148525 (2021). CrossRef R. Dąbrowski, P. Kula, J. Herman, \"High Birefringence Liquid Crystals\", Crystals 3, 443 (2013). CrossRef R. H. Self, C. P. Please, T. J. Sluckin, \"Deformation of nematic liquid crystals in an electric field\", Eur. J. Appl. Math. 13, 1 (2002). CrossRef T. Hegmann, H. Qi, V. M. Marx, \"Nanoparticles in Liquid Crystals: Synthesis, Self-Assembly, Defect Formation and Potential Applications\", J. Inorg. Organomet. Polym. 17, 483 (2007). CrossRef S. Kaur, S. P. Singh, A. M. Biradar, A. Choudhary, K. Sreenivas, \"Enhanced electro-optical properties in gold nanoparticles doped ferroelectric liquid crystals\", Appl. Phys. Lett. 91, 023120 (2007). CrossRef I. Dierking, \"Polymer Network–Stabilized Liquid Crystals\", Adv. Mater. 12, 167 (2000). CrossRef D. C. Hoekstra et al., \"Wavelength-Selective Photopolymerization of Hybrid Acrylate-Oxetane Liquid Crystals\", Angew. Chem. Int. Ed. 60, 10935 (2021). CrossRef Z. Ge, S. Gauza, M. Jiao, H. Xianyu, S.-T. Wu, \"Electro-optics of polymer-stabilized blue phase liquid crystal displays\", Appl. Phys. Lett. 94, 101104 (2009). CrossRef M. S. Chychłowski et al., \"Locally-induced permanent birefringence by polymer-stabilization of liquid crystal in cells and photonic crystal fibers\", Opto-electron. Rev. 26, 242 (2018). CrossRef R. Dąbrowski, J. Dziaduszek, T. Szczuciński, \"Mesomorphic Characteristics of Some New Homologous Series with the Isothiocyanato Terminal Group\", Mol. Cryst. Liq. Cryst. 124, 241 (1985). CrossRef","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Influence of photopolymerization on propagation properties of photonic crystal fiber infiltrated with liquid crystal mixture\",\"authors\":\"Marta Kajkowska, M. Chychłowski, P. Lesiak\",\"doi\":\"10.4302/plp.v14i3.1166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we analyze the influence of the photopolymerization process on propagation properties of photonic crystal fiber infiltrated with liquid crystal doped with a mixture of reactive monomer and photoinitiator. The obtained results showed changes in photonic band gap of the fiber due to refractive index change of the liquid crystal mixture caused by the polymerization process. Moreover, the research demonstrated the possibility of preserving the desired molecular orientation of liquid crystal initially stabilized by placing the sample in the external electric field. This was achieved by simultaneously irradiating the sample and controlling the orientation of liquid crystal molecules with the electric field. The spectral analysis of the polymerized sample showed no visible difference in propagation spectra when the electric field was turned off after the process was finished. Full Text: PDF ReferencesK. Yin et al., \\\"Advanced liquid crystal devices for augmented reality and virtual reality displays: principles and applications\\\", Light Sci Appl. 11, 161 (2022). CrossRef S. Singh, \\\"Phase transitions in liquid crystals\\\", Phys. Rep. 324, 107 (2000). CrossRef N. Tarjányi, M. Veveričík, D. Káčik, M. Timko, P. Kopčanský, \\\"Birefringence dispersion of 6CHBT liquid crystal determined in VIS-NIR spectral range\\\", Appl. Surf. Sci. 542, 148525 (2021). CrossRef R. Dąbrowski, P. Kula, J. Herman, \\\"High Birefringence Liquid Crystals\\\", Crystals 3, 443 (2013). CrossRef R. H. Self, C. P. Please, T. J. Sluckin, \\\"Deformation of nematic liquid crystals in an electric field\\\", Eur. J. Appl. Math. 13, 1 (2002). CrossRef T. Hegmann, H. Qi, V. M. Marx, \\\"Nanoparticles in Liquid Crystals: Synthesis, Self-Assembly, Defect Formation and Potential Applications\\\", J. Inorg. Organomet. Polym. 17, 483 (2007). CrossRef S. Kaur, S. P. Singh, A. M. Biradar, A. Choudhary, K. Sreenivas, \\\"Enhanced electro-optical properties in gold nanoparticles doped ferroelectric liquid crystals\\\", Appl. Phys. Lett. 91, 023120 (2007). CrossRef I. Dierking, \\\"Polymer Network–Stabilized Liquid Crystals\\\", Adv. Mater. 12, 167 (2000). CrossRef D. C. Hoekstra et al., \\\"Wavelength-Selective Photopolymerization of Hybrid Acrylate-Oxetane Liquid Crystals\\\", Angew. Chem. Int. Ed. 60, 10935 (2021). CrossRef Z. Ge, S. Gauza, M. Jiao, H. Xianyu, S.-T. Wu, \\\"Electro-optics of polymer-stabilized blue phase liquid crystal displays\\\", Appl. Phys. Lett. 94, 101104 (2009). CrossRef M. S. Chychłowski et al., \\\"Locally-induced permanent birefringence by polymer-stabilization of liquid crystal in cells and photonic crystal fibers\\\", Opto-electron. Rev. 26, 242 (2018). CrossRef R. Dąbrowski, J. Dziaduszek, T. Szczuciński, \\\"Mesomorphic Characteristics of Some New Homologous Series with the Isothiocyanato Terminal Group\\\", Mol. Cryst. Liq. Cryst. 124, 241 (1985). CrossRef\",\"PeriodicalId\":20055,\"journal\":{\"name\":\"Photonics Letters of Poland\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics Letters of Poland\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4302/plp.v14i3.1166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics Letters of Poland","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4302/plp.v14i3.1166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 2
摘要
本文分析了光聚合过程对掺有反应性单体和光引发剂混合物的液晶渗透光子晶体光纤传输性能的影响。所得结果表明,由于聚合过程引起液晶混合物折射率的变化,光纤的光子带隙发生了变化。此外,该研究表明,通过将样品置于外电场中,可以保持液晶初始稳定所需的分子取向。这是通过同时照射样品和用电场控制液晶分子的取向来实现的。对聚合后的样品进行光谱分析,结果表明,当该过程结束后关闭电场时,其传播光谱无明显差异。全文:PDF ReferencesK尹等人,“用于增强现实和虚拟现实显示的先进液晶设备:原理和应用”,光科学应用,11,161(2022)。CrossRef S. Singh,“液晶的相变”,物理学报。众议员324,107(2000)。CrossRef N. Tarjányi, M. Veveričík, D. Káčik, M. Timko, P. Kopčanský,“6CHBT液晶在VIS-NIR光谱范围内的双折射色散测定”,applied。冲浪。自然科学学报,2003,14(5):557 - 557。CrossRef R. Dąbrowski, P. Kula, J. Herman,“高双折射液晶”,晶体学报,2013,43(2013)。陈志强,陈志强,“向列型液晶在电场作用下的变形”,电子学报。j:。数学,13,1(2002)。* * * * * *,“纳米颗粒在液晶中的合成、自组装、缺陷形成及潜在应用”,吉林大学学报(自然科学版)。Organomet。高分子学报,17,483(2007)。CrossRef S. Kaur, S. P. Singh, A. M. Biradar, A. Choudhary, K. Sreenivas,“金纳米颗粒掺杂铁电液晶的增强电光性能”,applied。理论物理。快报,91,023120(2007)。王晓明,“聚合物网络稳定液晶”,高分子学报,12,167(2000)。CrossRef D. C. Hoekstra et al.,“波长选择性光聚合丙烯酸酯-氧乙烷杂化液晶”,高分子学报。化学。Int。编辑60,10935(2021)。交叉参考:葛振杰,高泽,焦敏,胡先宇,孙涛。吴,“聚合物稳定蓝相液晶显示器的电光学”,苹果。理论物理。科学通报,1999,101104 (2009)CrossRef M. S. Chychłowski et al.,“聚合物稳定液晶在细胞和光子晶体光纤中的局部诱导永久双折射”,光电。Rev. 26,242(2018)。CrossRef R. Dąbrowski, J. Dziaduszek, T. Szczuciński,“具有异硫氰酸酯末端基的新同源序列的亚形态特征”,Mol. crystal。酒精。晶体。124,241(1985)。CrossRef
Influence of photopolymerization on propagation properties of photonic crystal fiber infiltrated with liquid crystal mixture
In this paper we analyze the influence of the photopolymerization process on propagation properties of photonic crystal fiber infiltrated with liquid crystal doped with a mixture of reactive monomer and photoinitiator. The obtained results showed changes in photonic band gap of the fiber due to refractive index change of the liquid crystal mixture caused by the polymerization process. Moreover, the research demonstrated the possibility of preserving the desired molecular orientation of liquid crystal initially stabilized by placing the sample in the external electric field. This was achieved by simultaneously irradiating the sample and controlling the orientation of liquid crystal molecules with the electric field. The spectral analysis of the polymerized sample showed no visible difference in propagation spectra when the electric field was turned off after the process was finished. Full Text: PDF ReferencesK. Yin et al., "Advanced liquid crystal devices for augmented reality and virtual reality displays: principles and applications", Light Sci Appl. 11, 161 (2022). CrossRef S. Singh, "Phase transitions in liquid crystals", Phys. Rep. 324, 107 (2000). CrossRef N. Tarjányi, M. Veveričík, D. Káčik, M. Timko, P. Kopčanský, "Birefringence dispersion of 6CHBT liquid crystal determined in VIS-NIR spectral range", Appl. Surf. Sci. 542, 148525 (2021). CrossRef R. Dąbrowski, P. Kula, J. Herman, "High Birefringence Liquid Crystals", Crystals 3, 443 (2013). CrossRef R. H. Self, C. P. Please, T. J. Sluckin, "Deformation of nematic liquid crystals in an electric field", Eur. J. Appl. Math. 13, 1 (2002). CrossRef T. Hegmann, H. Qi, V. M. Marx, "Nanoparticles in Liquid Crystals: Synthesis, Self-Assembly, Defect Formation and Potential Applications", J. Inorg. Organomet. Polym. 17, 483 (2007). CrossRef S. Kaur, S. P. Singh, A. M. Biradar, A. Choudhary, K. Sreenivas, "Enhanced electro-optical properties in gold nanoparticles doped ferroelectric liquid crystals", Appl. Phys. Lett. 91, 023120 (2007). CrossRef I. Dierking, "Polymer Network–Stabilized Liquid Crystals", Adv. Mater. 12, 167 (2000). CrossRef D. C. Hoekstra et al., "Wavelength-Selective Photopolymerization of Hybrid Acrylate-Oxetane Liquid Crystals", Angew. Chem. Int. Ed. 60, 10935 (2021). CrossRef Z. Ge, S. Gauza, M. Jiao, H. Xianyu, S.-T. Wu, "Electro-optics of polymer-stabilized blue phase liquid crystal displays", Appl. Phys. Lett. 94, 101104 (2009). CrossRef M. S. Chychłowski et al., "Locally-induced permanent birefringence by polymer-stabilization of liquid crystal in cells and photonic crystal fibers", Opto-electron. Rev. 26, 242 (2018). CrossRef R. Dąbrowski, J. Dziaduszek, T. Szczuciński, "Mesomorphic Characteristics of Some New Homologous Series with the Isothiocyanato Terminal Group", Mol. Cryst. Liq. Cryst. 124, 241 (1985). CrossRef