埃塞俄比亚西部阿索萨Megele地区新元古代岩石的成因

IF 0.7 4区 地球科学 Q4 GEOSCIENCES, MULTIDISCIPLINARY Earth Sciences Research Journal Pub Date : 2022-09-08 DOI:10.15446/esrj.v26n2.98451
T. Oljira, O. Okunlola, A. Olatunji, D. Ayalew, B. Bedada
{"title":"埃塞俄比亚西部阿索萨Megele地区新元古代岩石的成因","authors":"T. Oljira, O. Okunlola, A. Olatunji, D. Ayalew, B. Bedada","doi":"10.15446/esrj.v26n2.98451","DOIUrl":null,"url":null,"abstract":"The Western Ethiopian Shield is underlain by volcano-sedimentary terranes, gneissic terranes, and ophiolitic rocks intruded by different granitoid bodies. The Megele area is part of Western Ethiopian Shield and consist of a low-grade volcano-sedimentary zone that has been intruded by mafic (dolerite dyke) and granitoid intrusions (granodiorite, diorite, granite gneiss). To establish the origin of the distinctive lithologies of the locality and evaluate its mineral potential, petrological, petrographical, and geochemical characterization of these rocks were carried out. Hence, the lithological, geochemical, and petrogenetic features of the Neoproterozoic granitoid intrusives and associated metavolcanic, were illustrated through a combination of field mapping, petrological, and geochemical analysis. The petrological result obtained from the thin section analysis of the granitoids and metabasalt from Megele area indicates that, these rocks has been metamorphosed from lower green-schist facies to lower amphibolite facies as denoted by mineral assemblages such as albite + muscovite + prehnite+ quartz and actinolite + hornblende + epidote + garnet. The major and trace element geochemical analysis of granodiorite, diorite, and granite gneiss revealed that the rocks in the studied area were mainly calc-alkaline and peraluminous in nature in the SiO2 versus Na2O+K2O and A/NK versus A/CNK, the details of the results on the major and rare elements are stated in the result section  respectively. The granitoids are S-type granites revealed silica saturated rock formed at the volcanic arc subduction (VAG) to syn-collisional (syn-COLD) tectonic setting by fractionation of LREE-enriched, HREE-depleted basaltic magma with considerable crustal input. This basaltic magma seems to be generated from the LREE-enriched, HREE-depleted mantle. In conclusion, the metabasalt is sub-alkaline (tholeiitic), metaluminous bodies generated at mid-oceanic ridge tectonic setting by partially melting of HREE-depleted and LREE-enriched basaltic magma. The magma sources are associated with the reworked sediment-laden crustal slabs from the subduction zone and resulted in S-type granitoid.","PeriodicalId":11456,"journal":{"name":"Earth Sciences Research Journal","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Petrogenesis of the Neoproterozoic rocks of Megele area, Asosa, Western Ethiopia\",\"authors\":\"T. Oljira, O. Okunlola, A. Olatunji, D. Ayalew, B. Bedada\",\"doi\":\"10.15446/esrj.v26n2.98451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Western Ethiopian Shield is underlain by volcano-sedimentary terranes, gneissic terranes, and ophiolitic rocks intruded by different granitoid bodies. The Megele area is part of Western Ethiopian Shield and consist of a low-grade volcano-sedimentary zone that has been intruded by mafic (dolerite dyke) and granitoid intrusions (granodiorite, diorite, granite gneiss). To establish the origin of the distinctive lithologies of the locality and evaluate its mineral potential, petrological, petrographical, and geochemical characterization of these rocks were carried out. Hence, the lithological, geochemical, and petrogenetic features of the Neoproterozoic granitoid intrusives and associated metavolcanic, were illustrated through a combination of field mapping, petrological, and geochemical analysis. The petrological result obtained from the thin section analysis of the granitoids and metabasalt from Megele area indicates that, these rocks has been metamorphosed from lower green-schist facies to lower amphibolite facies as denoted by mineral assemblages such as albite + muscovite + prehnite+ quartz and actinolite + hornblende + epidote + garnet. The major and trace element geochemical analysis of granodiorite, diorite, and granite gneiss revealed that the rocks in the studied area were mainly calc-alkaline and peraluminous in nature in the SiO2 versus Na2O+K2O and A/NK versus A/CNK, the details of the results on the major and rare elements are stated in the result section  respectively. The granitoids are S-type granites revealed silica saturated rock formed at the volcanic arc subduction (VAG) to syn-collisional (syn-COLD) tectonic setting by fractionation of LREE-enriched, HREE-depleted basaltic magma with considerable crustal input. This basaltic magma seems to be generated from the LREE-enriched, HREE-depleted mantle. In conclusion, the metabasalt is sub-alkaline (tholeiitic), metaluminous bodies generated at mid-oceanic ridge tectonic setting by partially melting of HREE-depleted and LREE-enriched basaltic magma. The magma sources are associated with the reworked sediment-laden crustal slabs from the subduction zone and resulted in S-type granitoid.\",\"PeriodicalId\":11456,\"journal\":{\"name\":\"Earth Sciences Research Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth Sciences Research Journal\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.15446/esrj.v26n2.98451\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Sciences Research Journal","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.15446/esrj.v26n2.98451","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

西埃塞俄比亚地盾下部为火山-沉积地体、片麻岩地体和蛇绿岩,被不同的花岗岩类岩体侵入。Megele地区是西埃塞俄比亚盾的一部分,由一个低品位的火山-沉积带组成,该带被基性岩(白云岩岩脉)和花岗岩类侵入(花岗闪长岩、闪长岩、花岗片麻岩)侵入。为了确定该地区独特岩性的成因,评价其矿物潜力,对这些岩石进行了岩石学、岩石学和地球化学表征。结合野外填图、岩石学和地球化学分析,阐述了新元古代花岗岩类侵入岩及其伴生变火山的岩石学、地球化学和岩石成因特征。对Megele地区花岗岩类和变质玄武岩的薄片岩石学分析结果表明,这些岩石经历了由下绿片岩相向下角闪岩相的变质作用,其矿物组合为钠长石+白云母+前白云岩+石英和放线石+角闪石+绿帘石+石榴石。花岗闪长岩、闪长岩和花岗片麻岩的主微量元素地球化学分析表明,研究区岩石以钙碱性和过铝质为主,SiO2对Na2O+K2O, A/NK对A/CNK,主微量元素结果分别在结果部分说明。花岗岩类为s型花岗岩,显示出石英饱和岩,形成于火山弧俯冲(VAG)到同步碰撞(同步冷)构造背景下,由大量地壳输入的富三稀土、贫三稀土玄武质岩浆分馏形成。这种玄武岩岩浆似乎是由富含低稀土元素、贫稀土元素的地幔产生的。综上所述,该变质玄武岩为亚碱性(拉斑岩)型,是洋中脊构造背景下由贫ree和富lree玄武岩岩浆部分熔融而成的成矿体。岩浆源与俯冲带含沉积地壳板块的改造有关,形成s型花岗岩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Petrogenesis of the Neoproterozoic rocks of Megele area, Asosa, Western Ethiopia
The Western Ethiopian Shield is underlain by volcano-sedimentary terranes, gneissic terranes, and ophiolitic rocks intruded by different granitoid bodies. The Megele area is part of Western Ethiopian Shield and consist of a low-grade volcano-sedimentary zone that has been intruded by mafic (dolerite dyke) and granitoid intrusions (granodiorite, diorite, granite gneiss). To establish the origin of the distinctive lithologies of the locality and evaluate its mineral potential, petrological, petrographical, and geochemical characterization of these rocks were carried out. Hence, the lithological, geochemical, and petrogenetic features of the Neoproterozoic granitoid intrusives and associated metavolcanic, were illustrated through a combination of field mapping, petrological, and geochemical analysis. The petrological result obtained from the thin section analysis of the granitoids and metabasalt from Megele area indicates that, these rocks has been metamorphosed from lower green-schist facies to lower amphibolite facies as denoted by mineral assemblages such as albite + muscovite + prehnite+ quartz and actinolite + hornblende + epidote + garnet. The major and trace element geochemical analysis of granodiorite, diorite, and granite gneiss revealed that the rocks in the studied area were mainly calc-alkaline and peraluminous in nature in the SiO2 versus Na2O+K2O and A/NK versus A/CNK, the details of the results on the major and rare elements are stated in the result section  respectively. The granitoids are S-type granites revealed silica saturated rock formed at the volcanic arc subduction (VAG) to syn-collisional (syn-COLD) tectonic setting by fractionation of LREE-enriched, HREE-depleted basaltic magma with considerable crustal input. This basaltic magma seems to be generated from the LREE-enriched, HREE-depleted mantle. In conclusion, the metabasalt is sub-alkaline (tholeiitic), metaluminous bodies generated at mid-oceanic ridge tectonic setting by partially melting of HREE-depleted and LREE-enriched basaltic magma. The magma sources are associated with the reworked sediment-laden crustal slabs from the subduction zone and resulted in S-type granitoid.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earth Sciences Research Journal
Earth Sciences Research Journal 地学-地球科学综合
CiteScore
1.50
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: ESRJ publishes the results from technical and scientific research on various disciplines of Earth Sciences and its interactions with several engineering applications. Works will only be considered if not previously published anywhere else. Manuscripts must contain information derived from scientific research projects or technical developments. The ideas expressed by publishing in ESRJ are the sole responsibility of the authors. We gladly consider manuscripts in the following subject areas: -Geophysics: Seismology, Seismic Prospecting, Gravimetric, Magnetic and Electrical methods. -Geology: Volcanology, Tectonics, Neotectonics, Geomorphology, Geochemistry, Geothermal Energy, ---Glaciology, Ore Geology, Environmental Geology, Geological Hazards. -Geodesy: Geodynamics, GPS measurements applied to geological and geophysical problems. -Basic Sciences and Computer Science applied to Geology and Geophysics. -Meteorology and Atmospheric Sciences. -Oceanography. -Planetary Sciences. -Engineering: Earthquake Engineering and Seismology Engineering, Geological Engineering, Geotechnics.
期刊最新文献
Study on large-gradient deformation of mining areas based on InSAR-PEK technology Estimation of evaporation from the water surface using the norm operator Computer vision techniques applied to automatic detection of sinusoids in borehole resistivity imaging – A comparison with the MSD method Landslide susceptibility mapping of Penang Island, Malaysia, using remote sensing and multi-geophysical methods Influence of Compaction on Electrical Resistivity Characteristics of Fine-grained Soil East of Baghdad City, Iraq
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1