隐私保护与人类活动识别研究综述

IF 0.5 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal on Smart Sensing and Intelligent Systems Pub Date : 2020-01-01 DOI:10.21307/ijssis-2020-008
I. Jung
{"title":"隐私保护与人类活动识别研究综述","authors":"I. Jung","doi":"10.21307/ijssis-2020-008","DOIUrl":null,"url":null,"abstract":"Abstract Many automation technologies using software are making humans convenient. One of these technologies is to collect data through cameras and sensors that are common in personal life and automatically recognize human and human activities. The goal of automation is to analyze the various types of big data that are difficult to perform mechanical data mining. Raw data collected from cameras and sensors are nothing but big data before analysis. In this case, how to protect data by secure storage is the most important issue. However, when the context-aware semantic information such as a specific person and his behavior is extracted from the analysis, the security sensitivity is increased. In other words, the secondary information generated by interpreting and extracting personal location and behavioral information contained in images and videos is linked to other personal information, causing privacy infringement issues. Privacy issues become important because there is a lot of software that everyone can access. Therefore, it is necessary to study privacy protection methods in the automatic recognition of human and human activities. This paper analyzes the cutting-edge research trends, techniques, and issues of privacy-preserving human and human activity recognition.","PeriodicalId":45623,"journal":{"name":"International Journal on Smart Sensing and Intelligent Systems","volume":" ","pages":"1 - 13"},"PeriodicalIF":0.5000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"A review of privacy-preserving human and human activity recognition\",\"authors\":\"I. Jung\",\"doi\":\"10.21307/ijssis-2020-008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Many automation technologies using software are making humans convenient. One of these technologies is to collect data through cameras and sensors that are common in personal life and automatically recognize human and human activities. The goal of automation is to analyze the various types of big data that are difficult to perform mechanical data mining. Raw data collected from cameras and sensors are nothing but big data before analysis. In this case, how to protect data by secure storage is the most important issue. However, when the context-aware semantic information such as a specific person and his behavior is extracted from the analysis, the security sensitivity is increased. In other words, the secondary information generated by interpreting and extracting personal location and behavioral information contained in images and videos is linked to other personal information, causing privacy infringement issues. Privacy issues become important because there is a lot of software that everyone can access. Therefore, it is necessary to study privacy protection methods in the automatic recognition of human and human activities. This paper analyzes the cutting-edge research trends, techniques, and issues of privacy-preserving human and human activity recognition.\",\"PeriodicalId\":45623,\"journal\":{\"name\":\"International Journal on Smart Sensing and Intelligent Systems\",\"volume\":\" \",\"pages\":\"1 - 13\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal on Smart Sensing and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21307/ijssis-2020-008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Smart Sensing and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21307/ijssis-2020-008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 14

摘要

许多使用软件的自动化技术正在给人类带来便利。其中一项技术是通过个人生活中常见的摄像头和传感器收集数据,并自动识别人和人类的活动。自动化的目标是分析难以进行机械数据挖掘的各种类型的大数据。从摄像头和传感器收集的原始数据只不过是未经分析的大数据。在这种情况下,如何通过安全存储来保护数据是最重要的问题。然而,当从分析中提取特定的人及其行为等上下文感知的语义信息时,安全敏感性就会提高。换句话说,图像和视频中包含的个人位置和行为信息通过解读和提取产生的二次信息与其他个人信息相关联,造成隐私侵犯问题。隐私问题变得很重要,因为有很多软件每个人都可以访问。因此,有必要研究人与人活动自动识别中的隐私保护方法。本文分析了隐私保护人类和人类活动识别的前沿研究趋势、技术和问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A review of privacy-preserving human and human activity recognition
Abstract Many automation technologies using software are making humans convenient. One of these technologies is to collect data through cameras and sensors that are common in personal life and automatically recognize human and human activities. The goal of automation is to analyze the various types of big data that are difficult to perform mechanical data mining. Raw data collected from cameras and sensors are nothing but big data before analysis. In this case, how to protect data by secure storage is the most important issue. However, when the context-aware semantic information such as a specific person and his behavior is extracted from the analysis, the security sensitivity is increased. In other words, the secondary information generated by interpreting and extracting personal location and behavioral information contained in images and videos is linked to other personal information, causing privacy infringement issues. Privacy issues become important because there is a lot of software that everyone can access. Therefore, it is necessary to study privacy protection methods in the automatic recognition of human and human activities. This paper analyzes the cutting-edge research trends, techniques, and issues of privacy-preserving human and human activity recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
8.30%
发文量
15
审稿时长
8 weeks
期刊介绍: nternational Journal on Smart Sensing and Intelligent Systems (S2IS) is a rapid and high-quality international forum wherein academics, researchers and practitioners may publish their high-quality, original, and state-of-the-art papers describing theoretical aspects, system architectures, analysis and design techniques, and implementation experiences in intelligent sensing technologies. The journal publishes articles reporting substantive results on a wide range of smart sensing approaches applied to variety of domain problems, including but not limited to: Ambient Intelligence and Smart Environment Analysis, Evaluation, and Test of Smart Sensors Intelligent Management of Sensors Fundamentals of Smart Sensing Principles and Mechanisms Materials and its Applications for Smart Sensors Smart Sensing Applications, Hardware, Software, Systems, and Technologies Smart Sensors in Multidisciplinary Domains and Problems Smart Sensors in Science and Engineering Smart Sensors in Social Science and Humanity
期刊最新文献
Performance Comparison of Statistical vs. Neural-Based Translation System on Low-Resource Languages Backpack detection model using multi-scale superpixel and body-part segmentation Study of structural and morphological properties of RF-sputtered SnO2 thin films and their effect on gas-sensing phenomenon Biometric authentication sensor with an encryption module for prevention of h/w hacking in digital custody services Multiple Sensor based Human Detection Robots: A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1