D. Bohn, T. Uno, Takeshi Yoshida, Christian Betcher, Jan Frohnheiser, Kristof Weidtmann
{"title":"液滴-膜相互作用在低压汽轮机冲蚀防护中的数值与实验研究","authors":"D. Bohn, T. Uno, Takeshi Yoshida, Christian Betcher, Jan Frohnheiser, Kristof Weidtmann","doi":"10.33737/gpps20-tc-65","DOIUrl":null,"url":null,"abstract":"One common approach for anti-erosion measures in low pressure steam turbines is to equip a hollow stator vane with slots on the airfoil surface in order to remove the water film by suction and consequently reduce the amount of secondary droplets. The purpose of this paper is to build an understanding of the predominant effects in fluid-film interaction and to examine the suitability of modern numerical methods for the design process of such slots. The performance of a suction slot in terms of collection rate and air leakage is investigated numerically in a flatplate setup with upstream injection of water. In order to model the relevant phenomena (film transport, edge stripping of droplets, transport of droplets in the surrounding fluid, wall impingement of droplets) an unsteady Eulerian-Lagrangian simulation setup is\napplied. The accuracy of the numerical approach is assessed by comparison with experimental\nmeasurements. The comparison of four cases with the measured data demonstrates that the chosen simulation approach is\nable to predict the main features of film flow and interaction with the surrounding fluid. The collection\nrate as well as fluid film properties show the same qualitative dependency from water mass flow rate and air velocity.","PeriodicalId":53002,"journal":{"name":"Journal of the Global Power and Propulsion Society","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2020-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Numerical and Experimental Study of Droplet-Film-Interaction for Low Pressure Steam Turbine Erosion Protection Applications\",\"authors\":\"D. Bohn, T. Uno, Takeshi Yoshida, Christian Betcher, Jan Frohnheiser, Kristof Weidtmann\",\"doi\":\"10.33737/gpps20-tc-65\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One common approach for anti-erosion measures in low pressure steam turbines is to equip a hollow stator vane with slots on the airfoil surface in order to remove the water film by suction and consequently reduce the amount of secondary droplets. The purpose of this paper is to build an understanding of the predominant effects in fluid-film interaction and to examine the suitability of modern numerical methods for the design process of such slots. The performance of a suction slot in terms of collection rate and air leakage is investigated numerically in a flatplate setup with upstream injection of water. In order to model the relevant phenomena (film transport, edge stripping of droplets, transport of droplets in the surrounding fluid, wall impingement of droplets) an unsteady Eulerian-Lagrangian simulation setup is\\napplied. The accuracy of the numerical approach is assessed by comparison with experimental\\nmeasurements. The comparison of four cases with the measured data demonstrates that the chosen simulation approach is\\nable to predict the main features of film flow and interaction with the surrounding fluid. The collection\\nrate as well as fluid film properties show the same qualitative dependency from water mass flow rate and air velocity.\",\"PeriodicalId\":53002,\"journal\":{\"name\":\"Journal of the Global Power and Propulsion Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Global Power and Propulsion Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33737/gpps20-tc-65\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Global Power and Propulsion Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33737/gpps20-tc-65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Numerical and Experimental Study of Droplet-Film-Interaction for Low Pressure Steam Turbine Erosion Protection Applications
One common approach for anti-erosion measures in low pressure steam turbines is to equip a hollow stator vane with slots on the airfoil surface in order to remove the water film by suction and consequently reduce the amount of secondary droplets. The purpose of this paper is to build an understanding of the predominant effects in fluid-film interaction and to examine the suitability of modern numerical methods for the design process of such slots. The performance of a suction slot in terms of collection rate and air leakage is investigated numerically in a flatplate setup with upstream injection of water. In order to model the relevant phenomena (film transport, edge stripping of droplets, transport of droplets in the surrounding fluid, wall impingement of droplets) an unsteady Eulerian-Lagrangian simulation setup is
applied. The accuracy of the numerical approach is assessed by comparison with experimental
measurements. The comparison of four cases with the measured data demonstrates that the chosen simulation approach is
able to predict the main features of film flow and interaction with the surrounding fluid. The collection
rate as well as fluid film properties show the same qualitative dependency from water mass flow rate and air velocity.