T. N. Dung, V. Horak, The Nguyen Luc, Van Nguyen Dung, Duc Do Linh
{"title":"遥控水下航行器的运动模型:CFD仿真","authors":"T. N. Dung, V. Horak, The Nguyen Luc, Van Nguyen Dung, Duc Do Linh","doi":"10.3849/aimt.1491","DOIUrl":null,"url":null,"abstract":"The article is directly related to the authors’ previous study of the remotely operated underwater vehicle’s (ROV) motion, where the mathematical model of the ROV motion is derived for laminar flow of water. This solution of the ROV motion has been improved by using the three-dimensional computational fluid dynamics (CFD) simulation that allows simulating the turbulent flow, which is mainly generated by propellers. Both methods were coupled to obtain more accurate values of hydrodynamic damping coefficients for the improved determination of the ROV motion velocity. Results of the solution are discussed and some of them are compared with the experiment.","PeriodicalId":39125,"journal":{"name":"Advances in Military Technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Motion Model of a Remotely Operated Underwater Vehicle: CFD Simulation\",\"authors\":\"T. N. Dung, V. Horak, The Nguyen Luc, Van Nguyen Dung, Duc Do Linh\",\"doi\":\"10.3849/aimt.1491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article is directly related to the authors’ previous study of the remotely operated underwater vehicle’s (ROV) motion, where the mathematical model of the ROV motion is derived for laminar flow of water. This solution of the ROV motion has been improved by using the three-dimensional computational fluid dynamics (CFD) simulation that allows simulating the turbulent flow, which is mainly generated by propellers. Both methods were coupled to obtain more accurate values of hydrodynamic damping coefficients for the improved determination of the ROV motion velocity. Results of the solution are discussed and some of them are compared with the experiment.\",\"PeriodicalId\":39125,\"journal\":{\"name\":\"Advances in Military Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Military Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3849/aimt.1491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Military Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3849/aimt.1491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
A Motion Model of a Remotely Operated Underwater Vehicle: CFD Simulation
The article is directly related to the authors’ previous study of the remotely operated underwater vehicle’s (ROV) motion, where the mathematical model of the ROV motion is derived for laminar flow of water. This solution of the ROV motion has been improved by using the three-dimensional computational fluid dynamics (CFD) simulation that allows simulating the turbulent flow, which is mainly generated by propellers. Both methods were coupled to obtain more accurate values of hydrodynamic damping coefficients for the improved determination of the ROV motion velocity. Results of the solution are discussed and some of them are compared with the experiment.