Salomon Obahoundje, Vami Hermann N’guessan Bi, A. Diedhiou, B. Kravitz, J. Moore
{"title":"平流层气溶胶地球工程对非洲平均气温和极端降水指数的影响","authors":"Salomon Obahoundje, Vami Hermann N’guessan Bi, A. Diedhiou, B. Kravitz, J. Moore","doi":"10.1108/ijccsm-03-2021-0028","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThree Coupled Model Intercomparison Project Phase 5 models involved in the G4 experiment of the Geoengineering Model Inter-comparison Project (GeoMIP) project were used to investigate the impact of stratospheric aerosol injection (SAI) on the mean surface air temperature and precipitation extremes in Africa.\n\n\nDesign/methodology/approach\nThis impact was examined under G4 and Representative Concentration Pathway (RCP) 4.5 scenarios on the total precipitation, the number of rainy days (RR1) and of days with heavy rainfall (R20 mm), the rainfall intensity (SDII), the maximum length of consecutive wet (CWD) and dry (CDD) days and on the maximum rainfall in five consecutive days (Rx5day) across four regions: Western Africa (WAF), Eastern Africa (EAF), Northern Africa and Southern Africa (SAF).\n\n\nFindings\nDuring the 50 years (2020–2069) of SAI, mean continental warming is −0.40°C lower in G4 than under RCP4.5. During the post-injection period (2070–2090), the temperature continues to increase, but at a lower rate (−0.19°C) than in RCP4.5. During SAI, annual rainfall in G4 is significantly greater than in RCP4.5 over the high latitudes (especially over SAF) and lower over the tropics. The termination of SAI leads to a significant increase of rainfall over Sahel and EAF and a decrease over SAF and Guinea Coast (WAF).\n\n\nPractical implications\nCompared to RCP4.5, SAI will contribute to reducing significantly regional warming but with a significant decrease of rainfall in the tropics where rainfed agriculture account for a large part of the economies. After the SAI period, the risk of drought over the extratropical regions (especially in SAF) will be mitigated, while the risk of floods will be exacerbated in the Central Sahel.\n\n\nOriginality/value\nTo meet the Paris Agreement, African countries will implement mitigation measures to contribute to keep the surface air temperature below 2°C. Geoengineering with SAI is suggested as an option to meet this challenge, but its implication on the African climate system needs a deep investigation in the aim to understand the impacts on temperature and precipitation extremes. To the best of the authors’ knowledge, this study is the first to investigate the potential impact of SAI using the G4 experiment of GeoMIP on temperature and precipitation extremes of the African continent.\n","PeriodicalId":46689,"journal":{"name":"International Journal of Climate Change Strategies and Management","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of stratospheric aerosol geoengineering on temperature mean and precipitation extremes indices in Africa\",\"authors\":\"Salomon Obahoundje, Vami Hermann N’guessan Bi, A. Diedhiou, B. Kravitz, J. Moore\",\"doi\":\"10.1108/ijccsm-03-2021-0028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nThree Coupled Model Intercomparison Project Phase 5 models involved in the G4 experiment of the Geoengineering Model Inter-comparison Project (GeoMIP) project were used to investigate the impact of stratospheric aerosol injection (SAI) on the mean surface air temperature and precipitation extremes in Africa.\\n\\n\\nDesign/methodology/approach\\nThis impact was examined under G4 and Representative Concentration Pathway (RCP) 4.5 scenarios on the total precipitation, the number of rainy days (RR1) and of days with heavy rainfall (R20 mm), the rainfall intensity (SDII), the maximum length of consecutive wet (CWD) and dry (CDD) days and on the maximum rainfall in five consecutive days (Rx5day) across four regions: Western Africa (WAF), Eastern Africa (EAF), Northern Africa and Southern Africa (SAF).\\n\\n\\nFindings\\nDuring the 50 years (2020–2069) of SAI, mean continental warming is −0.40°C lower in G4 than under RCP4.5. During the post-injection period (2070–2090), the temperature continues to increase, but at a lower rate (−0.19°C) than in RCP4.5. During SAI, annual rainfall in G4 is significantly greater than in RCP4.5 over the high latitudes (especially over SAF) and lower over the tropics. The termination of SAI leads to a significant increase of rainfall over Sahel and EAF and a decrease over SAF and Guinea Coast (WAF).\\n\\n\\nPractical implications\\nCompared to RCP4.5, SAI will contribute to reducing significantly regional warming but with a significant decrease of rainfall in the tropics where rainfed agriculture account for a large part of the economies. After the SAI period, the risk of drought over the extratropical regions (especially in SAF) will be mitigated, while the risk of floods will be exacerbated in the Central Sahel.\\n\\n\\nOriginality/value\\nTo meet the Paris Agreement, African countries will implement mitigation measures to contribute to keep the surface air temperature below 2°C. Geoengineering with SAI is suggested as an option to meet this challenge, but its implication on the African climate system needs a deep investigation in the aim to understand the impacts on temperature and precipitation extremes. To the best of the authors’ knowledge, this study is the first to investigate the potential impact of SAI using the G4 experiment of GeoMIP on temperature and precipitation extremes of the African continent.\\n\",\"PeriodicalId\":46689,\"journal\":{\"name\":\"International Journal of Climate Change Strategies and Management\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2022-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Climate Change Strategies and Management\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.1108/ijccsm-03-2021-0028\",\"RegionNum\":3,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Climate Change Strategies and Management","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1108/ijccsm-03-2021-0028","RegionNum":3,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
Influence of stratospheric aerosol geoengineering on temperature mean and precipitation extremes indices in Africa
Purpose
Three Coupled Model Intercomparison Project Phase 5 models involved in the G4 experiment of the Geoengineering Model Inter-comparison Project (GeoMIP) project were used to investigate the impact of stratospheric aerosol injection (SAI) on the mean surface air temperature and precipitation extremes in Africa.
Design/methodology/approach
This impact was examined under G4 and Representative Concentration Pathway (RCP) 4.5 scenarios on the total precipitation, the number of rainy days (RR1) and of days with heavy rainfall (R20 mm), the rainfall intensity (SDII), the maximum length of consecutive wet (CWD) and dry (CDD) days and on the maximum rainfall in five consecutive days (Rx5day) across four regions: Western Africa (WAF), Eastern Africa (EAF), Northern Africa and Southern Africa (SAF).
Findings
During the 50 years (2020–2069) of SAI, mean continental warming is −0.40°C lower in G4 than under RCP4.5. During the post-injection period (2070–2090), the temperature continues to increase, but at a lower rate (−0.19°C) than in RCP4.5. During SAI, annual rainfall in G4 is significantly greater than in RCP4.5 over the high latitudes (especially over SAF) and lower over the tropics. The termination of SAI leads to a significant increase of rainfall over Sahel and EAF and a decrease over SAF and Guinea Coast (WAF).
Practical implications
Compared to RCP4.5, SAI will contribute to reducing significantly regional warming but with a significant decrease of rainfall in the tropics where rainfed agriculture account for a large part of the economies. After the SAI period, the risk of drought over the extratropical regions (especially in SAF) will be mitigated, while the risk of floods will be exacerbated in the Central Sahel.
Originality/value
To meet the Paris Agreement, African countries will implement mitigation measures to contribute to keep the surface air temperature below 2°C. Geoengineering with SAI is suggested as an option to meet this challenge, but its implication on the African climate system needs a deep investigation in the aim to understand the impacts on temperature and precipitation extremes. To the best of the authors’ knowledge, this study is the first to investigate the potential impact of SAI using the G4 experiment of GeoMIP on temperature and precipitation extremes of the African continent.
期刊介绍:
Effective from volume 10 (2018), International Journal of Climate Change Strategies and Management is an open access journal. In the history of science there have been only a few issues which have mobilized the attention of scientists and policy-makers alike as the issue of climate change currently does. International Journal of Climate Change Strategies and Management is an international forum that addresses the need for disseminating scholarly research, projects and other initiatives aimed to facilitate a better understanding of the subject matter of climate change. The journal publishes papers dealing with policy-making on climate change, and methodological approaches to cope with the problems deriving from climate change. It disseminates experiences from projects and case studies where due consideration to environmental, economic, social and political aspects is given and especially the links and leverages that can be attained by this holistic approach. It regards climate change under the perspective of its wider implications: for economic growth, water and food security, and for people''s survival – especially those living in the poorest communities in developing countries.