Internet2链路中异常流量的更新模型

IF 1.2 4区 数学 Q2 STATISTICS & PROBABILITY Statistical Modelling Pub Date : 2021-01-22 DOI:10.1177/1471082X20983146
J. Nicholson, P. Kokoszka, Robert Lund, P. Kiessler, J. Sharp
{"title":"Internet2链路中异常流量的更新模型","authors":"J. Nicholson, P. Kokoszka, Robert Lund, P. Kiessler, J. Sharp","doi":"10.1177/1471082X20983146","DOIUrl":null,"url":null,"abstract":"We propose and estimate an alternating renewal model describing the propagation of anomalies in a backbone internet network in the United States. Internet anomalies, either caused by equipment malfunction, news events or malicious attacks, have been a focus of research in network engineering since the advent of the internet over 30 years ago. This article contributes to the understanding of statistical properties of the times between the arrivals of the anomalies, their duration and stochastic structure. Anomalous, or active, time periods are modelled as periods containing clusters or 1s, where 1 indicates a presence of an anomaly. The inactive periods consisting entirely of 0s dominate the 0–1 time series in every link. Since the active periods contain 0s, a separation parameter is introduced and estimated jointly with all other parameters of the model. Our statistical analysis shows that the integer-valued separation parameter and five other non-negative, scalar parameters satisfactorily describe all statistical properties of the observed 0–1 series.","PeriodicalId":49476,"journal":{"name":"Statistical Modelling","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2021-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1471082X20983146","citationCount":"1","resultStr":"{\"title\":\"Renewal model for anomalous traffic in Internet2 links\",\"authors\":\"J. Nicholson, P. Kokoszka, Robert Lund, P. Kiessler, J. Sharp\",\"doi\":\"10.1177/1471082X20983146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose and estimate an alternating renewal model describing the propagation of anomalies in a backbone internet network in the United States. Internet anomalies, either caused by equipment malfunction, news events or malicious attacks, have been a focus of research in network engineering since the advent of the internet over 30 years ago. This article contributes to the understanding of statistical properties of the times between the arrivals of the anomalies, their duration and stochastic structure. Anomalous, or active, time periods are modelled as periods containing clusters or 1s, where 1 indicates a presence of an anomaly. The inactive periods consisting entirely of 0s dominate the 0–1 time series in every link. Since the active periods contain 0s, a separation parameter is introduced and estimated jointly with all other parameters of the model. Our statistical analysis shows that the integer-valued separation parameter and five other non-negative, scalar parameters satisfactorily describe all statistical properties of the observed 0–1 series.\",\"PeriodicalId\":49476,\"journal\":{\"name\":\"Statistical Modelling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/1471082X20983146\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Modelling\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1177/1471082X20983146\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Modelling","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1177/1471082X20983146","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

我们提出并估计了一个交替更新模型,该模型描述了美国骨干网中异常的传播。自30多年前互联网出现以来,由设备故障、新闻事件或恶意攻击引起的互联网异常一直是网络工程研究的重点。本文有助于理解异常出现的时间间隔、持续时间和随机结构的统计性质。异常或活跃的时间段被建模为包含集群或1的周期,其中1表示存在异常。完全由0组成的非活动时段在各环节的0-1时间序列中占主导地位。由于活动周期包含0,因此引入分离参数并与模型的所有其他参数联合估计。我们的统计分析表明,整数值分离参数和其他五个非负标量参数满意地描述了观测到的0-1序列的所有统计性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Renewal model for anomalous traffic in Internet2 links
We propose and estimate an alternating renewal model describing the propagation of anomalies in a backbone internet network in the United States. Internet anomalies, either caused by equipment malfunction, news events or malicious attacks, have been a focus of research in network engineering since the advent of the internet over 30 years ago. This article contributes to the understanding of statistical properties of the times between the arrivals of the anomalies, their duration and stochastic structure. Anomalous, or active, time periods are modelled as periods containing clusters or 1s, where 1 indicates a presence of an anomaly. The inactive periods consisting entirely of 0s dominate the 0–1 time series in every link. Since the active periods contain 0s, a separation parameter is introduced and estimated jointly with all other parameters of the model. Our statistical analysis shows that the integer-valued separation parameter and five other non-negative, scalar parameters satisfactorily describe all statistical properties of the observed 0–1 series.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistical Modelling
Statistical Modelling 数学-统计学与概率论
CiteScore
2.20
自引率
0.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: The primary aim of the journal is to publish original and high-quality articles that recognize statistical modelling as the general framework for the application of statistical ideas. Submissions must reflect important developments, extensions, and applications in statistical modelling. The journal also encourages submissions that describe scientifically interesting, complex or novel statistical modelling aspects from a wide diversity of disciplines, and submissions that embrace the diversity of applied statistical modelling.
期刊最新文献
A black box approach to fitting smooth models of mortality Linear or smooth? Enhanced model choice in boosting via deselection of base-learners Spatial smoothing revisited: An application to rental data in Munich Joint modelling of non-crossing additive quantile regression via constrained B-spline varying coefficients Canonical correlation analysis in high dimensions with structured regularization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1