J. Nicholson, P. Kokoszka, Robert Lund, P. Kiessler, J. Sharp
{"title":"Internet2链路中异常流量的更新模型","authors":"J. Nicholson, P. Kokoszka, Robert Lund, P. Kiessler, J. Sharp","doi":"10.1177/1471082X20983146","DOIUrl":null,"url":null,"abstract":"We propose and estimate an alternating renewal model describing the propagation of anomalies in a backbone internet network in the United States. Internet anomalies, either caused by equipment malfunction, news events or malicious attacks, have been a focus of research in network engineering since the advent of the internet over 30 years ago. This article contributes to the understanding of statistical properties of the times between the arrivals of the anomalies, their duration and stochastic structure. Anomalous, or active, time periods are modelled as periods containing clusters or 1s, where 1 indicates a presence of an anomaly. The inactive periods consisting entirely of 0s dominate the 0–1 time series in every link. Since the active periods contain 0s, a separation parameter is introduced and estimated jointly with all other parameters of the model. Our statistical analysis shows that the integer-valued separation parameter and five other non-negative, scalar parameters satisfactorily describe all statistical properties of the observed 0–1 series.","PeriodicalId":49476,"journal":{"name":"Statistical Modelling","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2021-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1471082X20983146","citationCount":"1","resultStr":"{\"title\":\"Renewal model for anomalous traffic in Internet2 links\",\"authors\":\"J. Nicholson, P. Kokoszka, Robert Lund, P. Kiessler, J. Sharp\",\"doi\":\"10.1177/1471082X20983146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose and estimate an alternating renewal model describing the propagation of anomalies in a backbone internet network in the United States. Internet anomalies, either caused by equipment malfunction, news events or malicious attacks, have been a focus of research in network engineering since the advent of the internet over 30 years ago. This article contributes to the understanding of statistical properties of the times between the arrivals of the anomalies, their duration and stochastic structure. Anomalous, or active, time periods are modelled as periods containing clusters or 1s, where 1 indicates a presence of an anomaly. The inactive periods consisting entirely of 0s dominate the 0–1 time series in every link. Since the active periods contain 0s, a separation parameter is introduced and estimated jointly with all other parameters of the model. Our statistical analysis shows that the integer-valued separation parameter and five other non-negative, scalar parameters satisfactorily describe all statistical properties of the observed 0–1 series.\",\"PeriodicalId\":49476,\"journal\":{\"name\":\"Statistical Modelling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/1471082X20983146\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Modelling\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1177/1471082X20983146\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Modelling","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1177/1471082X20983146","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Renewal model for anomalous traffic in Internet2 links
We propose and estimate an alternating renewal model describing the propagation of anomalies in a backbone internet network in the United States. Internet anomalies, either caused by equipment malfunction, news events or malicious attacks, have been a focus of research in network engineering since the advent of the internet over 30 years ago. This article contributes to the understanding of statistical properties of the times between the arrivals of the anomalies, their duration and stochastic structure. Anomalous, or active, time periods are modelled as periods containing clusters or 1s, where 1 indicates a presence of an anomaly. The inactive periods consisting entirely of 0s dominate the 0–1 time series in every link. Since the active periods contain 0s, a separation parameter is introduced and estimated jointly with all other parameters of the model. Our statistical analysis shows that the integer-valued separation parameter and five other non-negative, scalar parameters satisfactorily describe all statistical properties of the observed 0–1 series.
期刊介绍:
The primary aim of the journal is to publish original and high-quality articles that recognize statistical modelling as the general framework for the application of statistical ideas. Submissions must reflect important developments, extensions, and applications in statistical modelling. The journal also encourages submissions that describe scientifically interesting, complex or novel statistical modelling aspects from a wide diversity of disciplines, and submissions that embrace the diversity of applied statistical modelling.