光学相干层析成像中通过掩膜孔径传输光信号以扩大焦深

P. K. Tiwari, K. P. Parmar, S. Pandey
{"title":"光学相干层析成像中通过掩膜孔径传输光信号以扩大焦深","authors":"P. K. Tiwari, K. P. Parmar, S. Pandey","doi":"10.29252/MJEE.14.4.93","DOIUrl":null,"url":null,"abstract":"Optical Coherence Tomography (OCT) imaging technique has emerged as a non- or minimally invasive modality in the clinical pathogenesis such as deep tissue examining and optical biopsy etc. The OCT imaging increases the Depth of Focus (DoF) by devising mechanisms to increase an Optical Transfer Function (OTF) of the imaging system. This is achieved through an apodization technique on the surface of lens in conjugation with the femtosecond Bessel-type laser beam. An investigation on postulation of OTF through a masked aperture, or specifically a micro-dot is investigated to measure variations of intensity profile at the optical coordinates in the radial as well as axial directions. The intensity variations in the radial and axial coordinates are calibrated to obtain the information, which significantly helps in devising of OCT imaging system. A theoretical investigation of OTF matching the experimental relationship between spot size and DoF in response to obscuration ratio is presented in this paper. This mathematical approach could be applied to different types of masking functions by meticulously exploring the parameters of optical coordinates.","PeriodicalId":37804,"journal":{"name":"Majlesi Journal of Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optical Signal Transmission through Masked Aperture to Extend the Depth of Focus in Optical Coherence Tomography\",\"authors\":\"P. K. Tiwari, K. P. Parmar, S. Pandey\",\"doi\":\"10.29252/MJEE.14.4.93\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optical Coherence Tomography (OCT) imaging technique has emerged as a non- or minimally invasive modality in the clinical pathogenesis such as deep tissue examining and optical biopsy etc. The OCT imaging increases the Depth of Focus (DoF) by devising mechanisms to increase an Optical Transfer Function (OTF) of the imaging system. This is achieved through an apodization technique on the surface of lens in conjugation with the femtosecond Bessel-type laser beam. An investigation on postulation of OTF through a masked aperture, or specifically a micro-dot is investigated to measure variations of intensity profile at the optical coordinates in the radial as well as axial directions. The intensity variations in the radial and axial coordinates are calibrated to obtain the information, which significantly helps in devising of OCT imaging system. A theoretical investigation of OTF matching the experimental relationship between spot size and DoF in response to obscuration ratio is presented in this paper. This mathematical approach could be applied to different types of masking functions by meticulously exploring the parameters of optical coordinates.\",\"PeriodicalId\":37804,\"journal\":{\"name\":\"Majlesi Journal of Electrical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Majlesi Journal of Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29252/MJEE.14.4.93\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Majlesi Journal of Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29252/MJEE.14.4.93","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

光学相干断层成像技术(OCT)作为一种无创或微创的成像技术,在深部组织检查、光学活检等临床病理诊断中崭露头角。OCT成像通过设计增加成像系统光学传递函数(OTF)的机制来增加焦深(DoF)。这是通过透镜表面与飞秒贝塞尔型激光束耦合的apodiization技术实现的。研究了通过掩膜孔径或微点测量光强分布在径向和轴向光学坐标上的变化的假设。通过标定径向和轴向的光强变化,获得光强变化信息,对OCT成像系统的设计具有重要的指导意义。本文从理论上研究了光斑尺寸与DoF对遮光比响应的实验关系。通过仔细研究光学坐标的参数,这种数学方法可以应用于不同类型的掩模函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optical Signal Transmission through Masked Aperture to Extend the Depth of Focus in Optical Coherence Tomography
Optical Coherence Tomography (OCT) imaging technique has emerged as a non- or minimally invasive modality in the clinical pathogenesis such as deep tissue examining and optical biopsy etc. The OCT imaging increases the Depth of Focus (DoF) by devising mechanisms to increase an Optical Transfer Function (OTF) of the imaging system. This is achieved through an apodization technique on the surface of lens in conjugation with the femtosecond Bessel-type laser beam. An investigation on postulation of OTF through a masked aperture, or specifically a micro-dot is investigated to measure variations of intensity profile at the optical coordinates in the radial as well as axial directions. The intensity variations in the radial and axial coordinates are calibrated to obtain the information, which significantly helps in devising of OCT imaging system. A theoretical investigation of OTF matching the experimental relationship between spot size and DoF in response to obscuration ratio is presented in this paper. This mathematical approach could be applied to different types of masking functions by meticulously exploring the parameters of optical coordinates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Majlesi Journal of Electrical Engineering
Majlesi Journal of Electrical Engineering Engineering-Electrical and Electronic Engineering
CiteScore
1.20
自引率
0.00%
发文量
9
期刊介绍: The scope of Majlesi Journal of Electrcial Engineering (MJEE) is ranging from mathematical foundation to practical engineering design in all areas of electrical engineering. The editorial board is international and original unpublished papers are welcome from throughout the world. The journal is devoted primarily to research papers, but very high quality survey and tutorial papers are also published. There is no publication charge for the authors.
期刊最新文献
Circuit Models to Study the Radiated and Conducted Susceptibilities of Multiconductor Shielded Cables Connected to Non-linear Load A CMOS Low-Power Noise Shaping-Enhanced SMASH ΣΔ Modulator A Novel High Voltage Gain Buck-Boost Converter with Dual Mode Boost A New Low Power, Area Efficient 4-bit Carry Look Ahead Adder in CNFET Technology Estimating Parallel Transmission Line Fault Using Phasor Measurement Unit based Artificial Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1