{"title":"小麦/大麦/大麻复合材料未发酵面团的评价","authors":"M. Hrušková, I. Švec","doi":"10.2478/sab-2018-0017","DOIUrl":null,"url":null,"abstract":"Abstract Basic wheat-barley flour premixes (70 : 30 and 50 : 50) were enhanced by 5 and 10% of dehulled and hulled hemp seeds wholemeal or by 2 types of hemp fine flour. Barley flour (BF) decreased both protein content and quality by approximately 1.5 and 50%, respectively. In blends, hemp fine flour containing recovered protein level back. BF lowered amylases activity by about 20–25% in maximum; hemp products had no significant effect. Farinograph water absorption was magnified by additions of both alternative flours. Considerable shortening of dough stability and decrease of resistance against over-mixing occurred for all flour tri-composites. Extensigraph dough elasticity increased and extensibility diminished. After dough resting taking 30 min, extensigraph energy of the control sample fell from 141 cm2 to a half as barley flour portion increased. In cereal composites, hemp products demonstrated reversal tendencies. BF lowered water suspension viscosity, but hemp wholemeal H4 and especially fine hemp flour H7 caused a recovery of amylograph maxima to level comparable with wheat control. Correlation analysis confirmed analytical and rheological data agreement – the extensigraph elasticity or energy could be predicted according to the Zeleny value, or the amylograph maximum according to the Falling Number (r = 0.79, 0.90, and 0.65, respectively; P = 99.9%).","PeriodicalId":53537,"journal":{"name":"Scientia Agriculturae Bohemica","volume":"49 1","pages":"118 - 126"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Non-Fermented Dough from Wheat/Barley/Hemp Composites\",\"authors\":\"M. Hrušková, I. Švec\",\"doi\":\"10.2478/sab-2018-0017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Basic wheat-barley flour premixes (70 : 30 and 50 : 50) were enhanced by 5 and 10% of dehulled and hulled hemp seeds wholemeal or by 2 types of hemp fine flour. Barley flour (BF) decreased both protein content and quality by approximately 1.5 and 50%, respectively. In blends, hemp fine flour containing recovered protein level back. BF lowered amylases activity by about 20–25% in maximum; hemp products had no significant effect. Farinograph water absorption was magnified by additions of both alternative flours. Considerable shortening of dough stability and decrease of resistance against over-mixing occurred for all flour tri-composites. Extensigraph dough elasticity increased and extensibility diminished. After dough resting taking 30 min, extensigraph energy of the control sample fell from 141 cm2 to a half as barley flour portion increased. In cereal composites, hemp products demonstrated reversal tendencies. BF lowered water suspension viscosity, but hemp wholemeal H4 and especially fine hemp flour H7 caused a recovery of amylograph maxima to level comparable with wheat control. Correlation analysis confirmed analytical and rheological data agreement – the extensigraph elasticity or energy could be predicted according to the Zeleny value, or the amylograph maximum according to the Falling Number (r = 0.79, 0.90, and 0.65, respectively; P = 99.9%).\",\"PeriodicalId\":53537,\"journal\":{\"name\":\"Scientia Agriculturae Bohemica\",\"volume\":\"49 1\",\"pages\":\"118 - 126\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientia Agriculturae Bohemica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/sab-2018-0017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientia Agriculturae Bohemica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/sab-2018-0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Evaluation of Non-Fermented Dough from Wheat/Barley/Hemp Composites
Abstract Basic wheat-barley flour premixes (70 : 30 and 50 : 50) were enhanced by 5 and 10% of dehulled and hulled hemp seeds wholemeal or by 2 types of hemp fine flour. Barley flour (BF) decreased both protein content and quality by approximately 1.5 and 50%, respectively. In blends, hemp fine flour containing recovered protein level back. BF lowered amylases activity by about 20–25% in maximum; hemp products had no significant effect. Farinograph water absorption was magnified by additions of both alternative flours. Considerable shortening of dough stability and decrease of resistance against over-mixing occurred for all flour tri-composites. Extensigraph dough elasticity increased and extensibility diminished. After dough resting taking 30 min, extensigraph energy of the control sample fell from 141 cm2 to a half as barley flour portion increased. In cereal composites, hemp products demonstrated reversal tendencies. BF lowered water suspension viscosity, but hemp wholemeal H4 and especially fine hemp flour H7 caused a recovery of amylograph maxima to level comparable with wheat control. Correlation analysis confirmed analytical and rheological data agreement – the extensigraph elasticity or energy could be predicted according to the Zeleny value, or the amylograph maximum according to the Falling Number (r = 0.79, 0.90, and 0.65, respectively; P = 99.9%).